
UNIFORM BOUNDS IN EXCELLENT RINGS AND
APPLICATIONS TO SEMICONTINUITY

SHIJI LYU

Abstract. This is a draft of a paper in preparation on certain uniform
behaviours on the spectrum of an excellent Fp-algebra.

1. Summary of results

In this section, let R be an excellent (Noetherian) Fp-algebra.

Theorem 1.0.1 (a uniform version of the Cohen-Gabber theorem; see Theo-
rem 3.4.3). Assume that R is (R0). Then there exist constants δ, µ,∆ ∈ Z≥0

depending only on R, and a quasi-finite, syntomic ring map R → S, such
that for all p ∈ Spec(R), there exist a q ∈ Spec(S) above p and a ring map
P → S∧

q that satisfy the followings.
(i) (P,mP ) is a formal power series ring over a field.
(ii) P/mP = κ(q).
(iii) P → S∧

q is finite and generically étale of generic degree ≤ δ.
(iv) qS∧

q /mPS
∧
q is generated by at most µ elements.

(v) There exist e1, . . . , en ∈ S∧
q that map to a basis of S∧

q ⊗P Frac(P ) (as
an Frac(P )-vector space), such that DiscS∧

q /P (e1, . . . , en) ̸∈ m∆+1
P .

The next few results are established in [Smi16] and [Pol18] for F -finite
rings or rings essentially of finite type over an excellent local ring.

Theorem 1.0.2 (see Corollary 5.2.5). For every finite R-module M , there
exists a constant C(M) with the following property. For all p ∈ Spec(R), all
ideals I ⊆ J of Rp with lRp(J/I) < ∞, and all e ≤ e′ ∈ Z≥1, the following
holds.∣∣∣∣∣ 1

pe dimMp
lRp

(
J [pe]Mp

I [pe]Mp

)
− 1

pe
′ dimMp

lRp

(
J [pe

′
]Mp

I [pe
′ ]Mp

)∣∣∣∣∣ ≤ C(M)p−elRp(J/I).

Here by convention the left hand side is zero if Mp = 0.

Theorem 1.0.3 (see Theorem 6.1.3). Assume that R is locally equidimen-
sional. Then the function p 7→ eHK(Rp) is upper semi-continuous on R.

Theorem 1.0.4 (see Theorem 6.2.7 and Corollary 6.2.8; restriction comes
from [EY11]). Assume that R is either a quotient of a regular ring, or Goren-
stein. Then the function p 7→ s(Rp) is lower semi-continuous on R, and the
strongly F -regular locus of R is open.

1
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2. Preliminaries

2.1. Local Bertini. We recall the following classical theorem. See also
[Tri94] and [OS15].

Theorem 2.1.1 ([Fle77, Satz 2.1]). Let (A,m) be a Noetherian local ring
containing a field.1 Let I be a proper ideal of A. Let D(I) be the open subset
Spec(A) \ V (I) of Spec(A). Let Σ be a finite subset of D(I).

Then there exists an element a ∈ I that is not contained in any prime in
Σ, and is not contained in p(2) for any p ∈ D(I).

We shall use the following consequence.

Lemma 2.1.2. Let (A,m) be a Noetherian J-2 local ring that is (R0). As-
sume d := dimA ≥ 1. Then there exist elements a1, . . . , ad−1 ∈ m such
that

(i) aj+1 is not in any minimal prime of (a1, . . . , aj); and that
(ii) A/(a1, . . . , ad−1) is (R0).

Proof. This follows from the argument in [Fle77, §3]. We reproduce the proof
for the reader’s convenience.

We can assume d > 1. By induction, it suffices to find an element a1 =
a ∈ m not in any minimal prime of A such that A/aA is (R0).

Since A is J-2, the singular locus Sing(A) is closed in Spec(A). Since A is
(R0), Σ1 = {p ∈ Sing(A) | ht p ≤ 1} is finite. Let Σ2 be the set of minimal
primes of A. Then m ̸∈ Σ1 ∪ Σ2 since d > 1.

By Theorem 2.1.1, we can find a ∈ m such that a is not in any prime in
Σ1∪Σ2 and that a ̸∈ p(2) for all p ∈ Spec(A)\{m}. It is then straightforward
to verify that A/aA is (R0). □

2.2. Discriminant. We review some basic facts about the discriminant we
will use, which is related to the Dedekind different, [Stacks, Tag 0BW0], cf.
[Lan86, Chapter III].

We let A be a normal domain, K its fraction field, B a finite A-algebra,
and we assume B ⊗A K finite étale over K of degree n.

Definition 2.2.1. Let e1, . . . , en ∈ B be elements that map to a basis of
B ⊗A K. The discriminant of e1, . . . , en is

DiscB/A(e1, . . . , en) = det
(
TrB/A(eiej)i,j

)
.

where TrB/A denotes the Galois-theoretic trace map B ⊗A K → K.

Since B is integral over A and A is normal, we have TrB/A(B) ⊆ A, and
thus DiscB/A(e1, . . . , en) ∈ A. Moreover, it is clear that the discriminant is
unchanged along a flat base change A → A′ of normal domains.

This notion is useful to us later because of the following result.

1Flenner stated the theorem for mixed characteristic rings as well, but his proof in that
case was wrong. This is explained and fixed in [Tri94].

https://stacks.math.columbia.edu/tag/0BW0
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Lemma 2.2.2. Let A,B, e1, . . . , en be as above. If B is a torsion-free A-
module and A contains Fp, then for any m ∈ Z≥1, as subsets of (B⊗AK)1/p

m

DiscB/A(e1, . . . , en).B
1/pm ⊆ A1/pm [B].

Proof. This is [HH90, Lemma 6.5] for (−)1/p
∞ , but the same proof works in

the case of (−)1/p
m . □

We need a compatibility result.

Lemma 2.2.3. Assume that (A,m) is local and that A → B is finite étale.
Let e1, . . . , en ∈ B be a basis of B as an A-module. Then

DiscB/A(e1, . . . , en) = Disc(B/mB)/(A/m)(e1, . . . , en)

where (−) means mod m or mod mB.

Proof. Let zijkl be elements of B such that eiejek =
∑

l zijklel. Then
TrB/A(eiej) =

∑
k zijkk, so DiscB/A(e1, . . . , en) = det ((

∑
k zijkk)i,j). The

same formulas compute the right hand side, showing the desired identity. □

We need an explicit computation.

Lemma 2.2.4. Let A → B be a finite map of DVRs. Let K = Frac(A),
L = Frac(B), and s = [L : K]. Assume that s ∈ A×, and that the residue
fields of A and B are the same (i.e. L/K is totally tamely ramified). Let vA
and vB be the discrete valuation of A and B respectively.

Assume that there exists y ∈ B such that vB(y) and s are relatively prime,
and that x := ys ∈ A.Then vA(DiscB′/A(y, . . . , y

s−1, ys)) = (s+ 1)vA(x) for
any sub-A-algebra B′ of B that contains y.

Proof. By assumptions L/K is separable and vB|A = svA. Since vB(y) and
s are relatively prime, it is clear that y, . . . , ys−1, ys is a basis of L/K, thus
for any sub-A-algebra B′ that contains y, L = Frac(B′), so we may assume
B′ = B.

Since x = ys ∈ A, we can easily write down the matrix of a power of y as a
linear transformation with respect to the basis y, . . . , ys−1, ys, and it follows
that Tr(ybs) = sxb and Tr(ya) = 0 if s does not divide a. Thus the matrix
Tr(yiyj) has exactly one nonzero entry in each row, which is sx in the first s−
1 rows and sx2 in the last one. Since s ∈ A×, vA(DiscB′/A(y, . . . , y

s−1, ys)) =
(s+ 1)vA(x) as desired. □

2.3. A non-completed version of Cohen-Gabber. We will need the
following version of the Cohen-Gabber structure theorem [GO08, Théorème
7.1].

Theorem 2.3.1. Let (Anc,mnc, k) be a Noetherian local Fp-algebra and let
(A,m, k) be the reduction of the completion of Anc. Assume that A is equidi-
mensional, and assume that for each minimal prime p of Anc, there is exactly
one minimal prime of A above p.
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Let d = dimA. Then there exists a set Λ ⊆ Anc and a system of parame-
ters t1, . . . , td ∈ mnc with the following properties.

(i) Λ maps to a p-basis of k.
(ii) For the unique coefficient field κ of A containing Λ (see [Bou83,

chapitre IX, §2, Théorème 1]), A is finite and generically étale over
the subring κ[[t1, . . . , td]].

Proof. We run the argument in [GO08, §7] for the ring A, while making
sure that the elements of concern belong in the ring Anc. We start with the
constructions in [GO08, (7.2)]. Let pnc1 , . . . , pncc be the minimal primes of
Anc, so by our assumption, A has exactly c minimal primes p1, . . . , pc with
pi ∩ Anc = pnci . Fix a set Λ ⊆ Anc that maps to a p-basis of k and let κ
be the unique coefficient field of A containing Λ. For a finite set e ⊆ Λ, let
κe = κp(Λ \ e).

By [GO08, (7.3)], we can find an e such that for each ring B = A/pi, we
have

rank Ω̂1
B/κe

= d+ |e|.
Now, we observe that for every ideal I of Anc, the sets {d(i) | i ∈ I} and
{d(i) | i ∈ IB} generates the same submodule of Ω̂1

B/κe
. This is because

Ω̂1
B/κe

is a finite module over B, so all its submodules are closed, and because
{d(i) | i ∈ I} is dense in {d(i) | i ∈ IB}, since d(mNB) ⊆ mN−1Ω̂1

B/κe
.

Applying this to I = pnc1 ∩ . . .∩pncj , noting that IA ̸⊆ pj+1 since pj+1∩Anc =

pncj+1, we see that the elements mi,m
′
i in [GO08, (7.4)] can be chosen to be in

Anc. Finally, applying the observation to I = Anc, we see that the elements
fi in [GO08, (7.5)] can be chosen in Anc. This concludes the proof. □

3. Tame ramification

3.1. A condition of one-dimensional local rings. We consider the fol-
lowing condition of a Noetherian local ring A of dimension 1.

Condition 3.1.1.
(i) A∧ is (R0).
(ii) (A/p)ν is local for all minimal primes p of A.2
(iii) The map A → (A/p)ν induces an isomorphism of residue fields for

all minimal primes p of A.3

Note that if A is complete, or more generally Henselian, then (ii) is auto-
matic; see [Stacks, Tag 0BQ0].

Lemma 3.1.2. Let A be a Noetherian local ring of dimension 1. The fol-
lowings are equivalent:

(i) the completion A∧ of A is (R0); and
(ii) A is (R0), and the normalization of A is finite.

2In other words, A/p is unibranch [Stacks, Tag 0BPZ].
3In particular, A/p is geometrically unibranch [Stacks, Tag 0BPZ].

https://stacks.math.columbia.edu/tag/0BQ0
https://stacks.math.columbia.edu/tag/0BPZ
https://stacks.math.columbia.edu/tag/0BPZ
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If this holds, then (A∧)red = (Ared)
∧ and A∧ν = Aν ⊗A A∧.

Proof. Assume first that A∧ is (R0), so A is also (R0). Let N be the nil-
radical of A. Then N(A∧)P = 0 for all minimal primes P of A∧, thus
A∧/NA∧ = (Ared)

∧ is (R0). Since A is one-dimensional, Ared is Cohen-
Macaulay, thus (Ared)

∧ is Cohen-Macaulay, thus reduced since it is (R0).
Finiteness of normalization is then classical, see for example [Stacks, Tag
032Y].

Now assume (ii). We need to show (i) and A∧ν = Aν ⊗A A∧. Since Aν is
finite over A, we see Aν ⊗A A∧ is the completion of Aν as a semi-local ring.
Since Aν is normal of dimension 1, it is regular, hence so is Aν ⊗AA∧. Since
A is (R0), for any f ∈ m, Af = (Aν)f , thus (A∧)f = (Aν ⊗A A∧)f , so A∧ is
(R0) and Aν ⊗A A∧ = A∧ν . □

Condition 3.1.1 implies desired tame behavior, Proposition 3.1.4 below.
Before that, some notations.

Notation 3.1.3. Let A be a Noetherian local ring of dimension 1 that
satisfies Condition 3.1.1.

Let p be a minimal prime of A. (A/p)ν is finite over A by Lemma 3.1.2,
thus a DVR.4 Denote by vp : A → Z≥0 ∪ {∞} the corresponding valuation
composed with the map A → (A/p)ν ; by Condition 3.1.1(iii), we see vp(a) =
lA((A/p)

ν/a(A/p)ν). Let β(p) ∈ Z≥0 be the minimal β such that there exists
an element s ∈ A in all minimal primes of A other than p and that vp(s) = β.

Denote by cp the conductor of the extension A/p → (A/p)ν , i.e., cp =
{a ∈ (A/p)ν | a(A/p)ν ⊆ A/p}. Note that A/p → (A/p)ν is finite by
Lemma 3.1.2, so cp is nonzero. Denote by γ0(p) the number lA((A/p)

ν/cp).
Assume now that A contains Fp. We denote by γ(p) the minimal integer

γ such that γ ≥ γ0(p) + β(p) and that γ is not divisible by p.
Finally, let δ(A) =

∑
p γ(p) and ∆(A) =

∑
p(γ(p) + 1)2, where the sum is

over all minimal primes.

We now present the main result of this subsection. Our idea has some
overlap with [Ska16].

Proposition 3.1.4. Let (A,m) be a Noetherian local ring of dimension 1
that satisfies Condition 3.1.1. Then the followings hold.

(i) Let p be a minimal prime of A, and let np ∈ Z, np ≥ γ0(p). Then
there exists an element tp ∈ A lying in all minimal primes other than
p, such that vp(tp) = np + β(p).

(ii) Assume that A contains Fp. Then there exists t ∈ m such that for
all minimal primes p of A, vp(t) = γ(p).

(iii) Assume that A is complete and contains Fp. For any t as in (ii), and
any choice of a coefficient field k ⊆ A, the map k[[T ]] → A mapping
T to t is finite and generically étale of generic degree n = δ(A).

4In fact, the normalization of a one-dimensional Noetherian domain is always Noether-
ian by the theorem of Krull-Akizuki [Stacks, Tag 00PG].

https://stacks.math.columbia.edu/tag/032Y
https://stacks.math.columbia.edu/tag/00PG
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(iv) For any k[[T ]] → A as in (iii), there exist elements e1, ..., en of A
mapping to a basis of A[ 1T ] over k((T )) such that the T -adic valuation
of the discriminant DiscA/k[[T ]](e1, . . . , en) is ∆(A).

Proof. By the definition of the conductor, we see that there exists rp ∈ A
such that vp(rp) = np. Let sp be an element of A contained in all other
minimal primes of A and satisfies vp(sp) = β(p). Then tp = sprp satisfies
vp(t) = np + β(p), showing (i).

For (ii), let np = γ(p) − β(p) for each p, and let tp be as in (i). Then
t =

∑
p tp works. Note that t must be in m since γ(p) > 0.

Now we prove (iii). Let t ∈ m be such that for all minimal primes p of
A, vp(t) = γ(p). In particular, t is a parameter of A. Let k ⊆ A be an
arbitrary coefficient field, so the map k[[T ]] → A mapping T to t is finite.
Since vp(t) = γ(p) is not divisible by p and since the residue field of (A/p)ν
is k (Condition 3.1.1(iii)), we see that k[[T ]] → (A/p)ν is totally tamely
ramified of index γ(p). In particular, k[[T ]] → A/p is generically étale, thus
so is k[[T ]] → A since A is (R0). That k[[T ]] → A has generic degree δ(A) is
clear.

It remains to show (iv). Let p be a minimal prime of A. Let s be an
element of A contained in all other minimal primes of A and satisfies vp(s) =
β(p). In (A/p)ν we can write sγ(p) = tβ(p)u, where u ∈ (A/p)ν×. Then we can
write u = vw−1

1 , with v ∈ k× and w1 has residue class 1 in the residue field
of (A/p)ν , since the residue field of (A/p)ν is k (Condition 3.1.1(iii)). Since
p does not divide γ(p), by Hensel’s Lemma w1 = wγ(p) for some w ∈ (A/p)ν

with residue class 1. Then (ws)γ(p) = tβ(p)v.
Let y ∈ A be such that the image of y in A/p is in cp and that vp(y) =

np := γ(p) − β(p) + 1. This is possible because np ≥ γ0(p). Then similarly
we can write (w′y)γ(p) = tnpv′ ∈ (A/p)ν , where v′ ∈ k× and w′ has residue
class 1. Now, since the image of y in A/p is in cp, there exists z ∈ A such
that the z = yww′ ∈ A/p. Finally, let xp be the element sz. Then xp is
in all minimal ideals other than p, and x

γ(p)
p = tγ(p)+1vv′ ∈ (A/p)ν , where

v, v′ ∈ k×.
We have that vp(xp) = γ(p) + 1 and γ(p) are relatively prime, so we

see that xp, . . . , x
γ(p)
p is a basis of Frac(A/p) over k((T )). Since xp is in

all minimal primes other than p, we see that ∪p{xp, . . . , xγ(p)p } is a basis of
A[ 1T ] over k((T )). It suffices to show the discriminant of this basis has T -
adic valuation ∆(A); thus it suffices to show the discriminant of the basis
xp, . . . , x

γ(p)
p of Frac(A/p) over k((T )) has T -adic valuation (γ(p)+1)2. Since

x
γ(p)
p is the image of T γ(p)+1vv′ ∈ k[[T ]], this follows from Lemma 2.2.4. □

We will need to move between a local ring and its completion.

Lemma 3.1.5. Let A be a Noetherian local ring of dimension 1. Assume
that A satisfies Condition 3.1.1(i)(ii). Then the followings hold.
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(i) The map p 7→ pA∧ is a bijection between the minimal primes of A
and those of A∧.

(ii) A satisfies Condition 3.1.1(iii) if and only if A∧ does.
(iii) If (ii) is the case, then the map in (i) identifies β, γ0 and γ. In

particular, δ(A) = δ(A∧) and ∆(A) = ∆(A∧).

Proof. Let p be a minimal prime of A. By Lemma 3.1.2, A/p → (A/p)ν is
finite, so by Lemma 3.1.2 again we see that (A/p)ν∧ = (A/p)∧ν is normal.
Condition 3.1.1(ii) says that (A/p)ν is local, thus (A/p)ν∧ is local, hence
a DVR, and its subring (A/p)∧ is then an integral domain. So pA∧ is a
minimal prime of A∧, showing (i), and (A/p)ν∧ = (A∧/pA∧)ν , showing (ii).

For (iii), by previous discussions vpA∧ |A = vp. Since taking conductor and
finite intersection commute with flat base change, it is clear that γ0(pA∧) =
γ0(p) and β(pA∧) = β(p). Therefore γ(pA∧) = γ(p). □

3.2. Tame curves.

Definition 3.2.1. Let A be a Noetherian local ring, d = dimA. We say a
proper ideal a of A defines a tame curve if

(i) all minimal primes of a have height d− 1; and
(ii) A/a satisfies Condition 3.1.1.

Lemma 3.2.2. Let A be a Noetherian local ring, a a proper ideal of A. If a
defines a tame curve, so does aA∧ ⊆ A∧.

Proof. Since A → A∧ is flat, every minimal prime of aA∧ has the same height
as some minimal prime of a. This takes care of (i) in Definition 3.2.1. For
(ii), Condition 3.1.1(i) for A/a and A∧/aA∧ are the same, (ii) is automatic
for the complete local ring A∧/aA∧, and A∧/aA∧ satisfies (iii) by Lemma
3.1.5. □

Theorem 3.2.3. Let (A,m) be a Noetherian local Fp-algebra, d = dimA.
Assume that there exist elements a1, . . . , ad−1 such that a = (a1, . . . , ad−1)
defines a tame curve.

Then there exists t ∈ m such that for any coefficient field k of A∧, the
map P := k[[X1, . . . , Xd−1, T ]] → A∧ mapping Xi to ai and T to t is finite
of generic degree n = δ(A/a), and is étale at the prime P = (X1, . . . , Xd−1),
and there exists a basis e1, . . . , en of A∧ ⊗P Frac(P ) over Frac(P ) such that

DiscA∧/P (e1, . . . , en) ̸∈ P+ T∆(A/a)+1P

See Notation 3.1.3 for δ(−) and ∆(−) in the statement.

Proof. The completion of A satisfies the same assumptions by Lemmas 3.2.2
and 3.1.5. We will show that if A is complete, and t ∈ A is such that the
image of t in A/a is as in Proposition 3.1.4(ii), then t works. This proves
the theorem, since the set of t indicated in Proposition 3.1.4(ii) is open in
the adic topology.

Assume A and t are as above. Let k be an arbitrary coefficient field and
let P → A and P be as in the statement of our theorem. Note that P → A
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is finite and a = PA. Since every minimal prime of a has height d− 1, every
maximal ideal of AP has height d− 1. Since PP/PPP → AP/PAP is finite
étale of degree n = δ(A/a) (Proposition 3.1.4(iii)), and since PP is normal
of dimension d − 1, PP → AP is finite étale of degree n, see for example
[Stacks, Tag 0GSC].

Find n elements of A/a = A/PA as in Proposition 3.1.4(iv) and lift them
to elements e1, . . . , en ∈ A. Then e1, . . . , en is a basis of AP over PP, and
Lemma 2.2.3 gives DiscA/P (e1, . . . , en) ̸∈ P+ T∆(A/a)+1P , as desired.

□

3.3. Finding tame curves. The goal of this subsection is to show that
tame curves in the spectrum of a local ring can be found after a reasonable
extension (Proposition 3.3.2).

Lemma 3.3.1. Let R be a Noetherian local Fp-algebra of dimension 1. As-
sume that R∧ is (R0), and assume that R/p is geometrically unibranch for
all minimal primes p of R. Then the followings hold.

(i) There exist a subset Λ of R and a parameter t ∈ R that satisfies the
conclusions of Theorem 2.3.1.

(ii) For Λ, t as in (i), put κ0 = Fp(Λ). Then there exists a finite purely
inseparable extension κ′/κ0 such that R ⊗κ0 κ′ satisfies Condition
3.1.1.

Proof. For (i), we need to verify the conditions of Theorem 2.3.1. Since R
is one-dimensional, A = (R∧)red is equidimensional. Since R/p is (geomet-
rically) unibrach for each minimal prime p of R and since R∧ is (R0), R
satisfies Condition 3.1.1(i)(ii), so by Lemma 3.1.5, p 7→ pA is a bijection
between the minimal primes of R and A. Thus the conditions of Theorem
2.3.1 are satisfied.

Now fix Λ and t as in (i) and let κ0 = Fp(Λ). Let κ be the unique
coefficient field of R∧ containing κ0, so A is finite and generically étale over
κ[[t]], see Theorem 2.3.1. Since R∧ is (R0), we see R∧ is finite and generically
étale over κ[[t]] as well.

We fix a perfect closure κperf0 and denote by κ1, κ2, . . . the finite purely
inseparable extensions of κ0 inside κperf0 . For a κ1, denote by R1 the ring
R⊗κ0 κ1, so R1 is a Noetherian local ring with residue field k⊗κ0 κ1 where k

is the residue field of R. Let R̃ be the local ring R⊗κ0κ
perf
0 , and let R∗ be the

ring R∧⊗κ[[t]] κ
perf [[t]]. Since Λ is a p-basis of κ, we have κperf = κ⊗κ0 κ

perf
0 ,

so we have canonical maps R1 → R̃ → R∗. Note that R∗ is finite and
generically étale over κperf [[t]], hence is complete, Noetherian, and (R0).
The map R1 → R∗ is faithfully flat, and R̃ is the union of all such rings
R1, so a = aR∗ ∩ R̃ for every ideal a of R̃. Thus R̃ is Noetherian, and it is
clear that R̃∧ = R∗. By Lemma 3.1.2, the normalization of R̃ is finite, so
we can find a κ1 such that Rν

1 ⊗κ1 κ
perf
0 = R̃ν , hence for all κ2/κ1, we have

Rν
1 ⊗κ1 κ2 = Rν

2 .

https://stacks.math.columbia.edu/tag/0GSC
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For a κ2/κ1, consider the quantity λ(κ2) = lRν
2
(Rν

2/tR
ν
2). Then λ(κ2) ≤

lR2(R
ν
2/tR

ν
2), and since Rν

1 ⊗κ1 κ2 = Rν
2 , this latter quantity is equal to

lR1(R
ν
1/tR

ν
1). Thus the quantities λ(κ2) are bounded, so we may take a

κ2/κ1 that achives the maximal λ(κ2). We claim that κ2/κ0 is what we
want. Condition 3.1.1(i) is clear since R2 → R∗ is faithfully flat; we need
the rest two items.

Note that R → R2 is finite and radicial, so for each minimal prime p2 of
R2, p2∩R is a minimal prime R and we have (R/p2∩R)sh⊗R/p2∩RR2/p2 =

(R2/p2)
sh. Since R/p2∩R is geometrically unibranch, R2/p2 is geometrically

unibranch, see [Stacks, Tag 06DM]. In particular, Condition 3.1.1(ii) holds
for R2.

Now we show Condition 3.1.1(iii) holds for R2. Let m1, . . . ,mc be the
maximal ideals of Rν

2 . For every κ3/κ2, since Rν
2 ⊗κ2 κ3 = Rν

3 , ni =
√
miRν

3
are exactly the maximal ideals of Rν

3 , and (Rν
2)mi ⊗κ2 κ3 = (Rν

3)ni . Thus we
see

lRν
3
(Rν

3/tR
ν
3) =

∑
i

lRν
3
((Rν

3)ni/t(R
ν
3)ni)

=
∑
i

1

[κ(ni) : κ(mi)]
lRν

2
((Rν

3)ni/t(R
ν
3)ni)

=
∑
i

[κ3 : κ2]

[κ(ni) : κ(mi)]
lRν

2
((Rν

2)mi/t(R
ν
2)mi)

and we always have

lRν
2
(Rν

2/tR
ν
2) =

∑
i

lRν
2
((Rν

2)mi/t(R
ν
2)mi).

For each i we have [κ3 : κ2] ≥ [κ(ni) : κ(mi)] since κ(ni) is a quotient of
κ(mi)⊗κ2 κ3. Thus the maximality of λ(κ2) gives [κ3 : κ2] = [κ(ni) : κ(mi)]
and thus κ(ni) = κ(mi) ⊗κ2 κ3. Since κ3/κ2 was arbitrary, we must have
κ(mi) separable over κ2 for all i. Since R2/p2 is geometrically unibranch for
every minimal prime p2 of R2, we see κ(mi) is purely inseparable over κ2, so
κ(mi) = κ2, which is Condition 3.1.1(iii), as desired. □

Proposition 3.3.2. Let (A,m, k) be a Noetherian local Fp-algebra of dimen-
sion d. Let a be a proper ideal of A. Assume that all minimal primes of a
has height d− 1 and that (A/a)∧ is (R0).

Then there exist a syntomic-local ring map A → B5 such that B/mB is
finite over k and that aB defines a tame curve.

Proof. Any étale-local ring map A/a → E is syntomic-local by [Stacks, Tag
00UE], and E∧ is (R0) since it is étale over (A/a)∧. Take an E such that
E/p is geometrically unibranch for all minimal primes p of E, cf. [Stacks,
Tag 0CB4]. By Lemma 3.3.1, there exists a finite syntomic E-algebra C that

5This, by convention, means that A → B is a local map of local rings such that B is
the localization of a syntomic A-algebra at a prime ideal.

https://stacks.math.columbia.edu/tag/06DM
https://stacks.math.columbia.edu/tag/00UE
https://stacks.math.columbia.edu/tag/0CB4
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is local and satisfies Condition 3.1.1. Note that A/a → C is also syntomic-
local, and C/mC is finite over k.

By [Stacks, Tag 07M8], we can lift C to a syntomic-local A-algebra B. By
our choice, B/aB = C satisfies Definition 3.2.1(ii), and B/mB = C/mC is
finite over k. By flatness, dimB = d and all minimal primes of aB have
height d− 1, giving Definition 3.2.1(i). □

3.4. Local uniformity. The goal of this subsection is to prove the following
statement.

Theorem 3.4.1. Let R be a Noetherian ring, p ∈ Spec(R), d = ht p.
Let a ⊆ p be an ideal of R such that aRp that defines a tame curve (Defi-

nition 3.2.1). Then, upon replacing R by Rg for some g ̸∈ p, the followings
hold.

(i) For all P ∈ V (p), ht(P) = d+ ht(P/p).
(ii) For all P ∈ V (p) such that RP/pRP is regular, and all sequence of

elements π1, . . . , πδ ∈ RP that maps to a regular system of parameters
of RP/pRP, A := aRP + (π) defines a tame curve.

(iii) Notations as in (ii) and Notation 3.1.3. If R/a contains Fp, then
for P, π as in (ii), we have δ(RP/A) = δ(Rp/a) and ∆(RP/A) =
∆(Rp/a).

Item (i) follows from [EGA IV2, Proposition 6.10.6]. Before going into
the proof of (ii) and (iii), we note the following.

Discussion 3.4.2 (cf. [EY11, Lemmas 3.2 and 3.3]). Let R be a Noetherian
ring, p ∈ Spec(R). Let M be a finite R-module. Then, upon replacing R
by Rg for some g ̸∈ p, there is a filtration M = Mn ⊋ Mn−1 ⊋ . . . ⊋ M1 ⊋
M0 = 0 such that Mj/Mj−1

∼= R/pj where pj ⊆ p. In particular, if Mp is
of finite length, then M is a successive extension of R/p. Thus if P ∈ V (p),
π1, . . . , πh elements of RP that are a regular sequence in RP/pRP, then
π1, . . . , πh is a regular sequence in MP. Consequently, if

0 −−−−→ M1 −−−−→ M2 −−−−→ M −−−−→ 0

is a short exact sequence of R-modules, then

0 −−−−→ (M1)P/(π) −−−−→ (M2)P/(π) −−−−→ MP/(π) −−−−→ 0

is exact. Moreover, if h = dimRP/pRP (so in particular RP/pRP is Cohen-
Macaulay), then looking at the prime filtration we see l(MP/(π)) = l(Mp)l(RP/(pRP+
(π))).

Now we continue the proof of Theorem 3.4.1.

Step 1. Let q1, . . . , qm be the minimal primes of a. Localize R, we may
assume qi ⊆ p for all i.

Step 2. For each i, the normalization of Rp/qiRp is finite (Lemma 3.1.2).
Thus there exists a finite extension R′

i of R/qi in its fraction field such that
(R′

i)p = (Rp/qiRp)
ν .

https://stacks.math.columbia.edu/tag/07M8
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Step 3. By Condition 3.1.1(ii), (R′
i)p is local, so R′

i has exactly one prime p′i
above p. Localizing R we may assume p′i =

√
pR′

i. By Condition 3.1.1(iii),
(R′

i)p/p
′
i(R

′
i)p = κ(p), so after localizing R we may assume R/p = R′

i/p
′
i. In

particular, for each P ∈ V (p), there is a unique prime P′
i of R′

i above P,
and RP/pRP = (R′

i)P′
i
/p′i(R

′
i)P′

i
, in particular κ(P′

i) = κ(P).

Step 4. Since (R′
i)p is a DVR, after localizing R we may assume that p′i is a

principal ideal. Let τi be a generator, so R/p = R′
i/τiR

′
i. For P, π as in (ii),

τi, π is then a regular sequence in (R′
i)P′

i
= (R′

i)P that generates the maximal
ideal. Thus (R′

i)P is regular and τi, π is a regular system of parameters. In
particular, π is a regular sequence in (R′

i)P and (R′
i)P/(π) is a DVR.

Step 5. Apply Discussion 3.4.2 to M =
R′

i
R/qi

, we see that after localizing R,
we may assume that for all P, π, RP/(qiRP + (π)) → (R′

i)P/(π) is injective
with finite length cokernel. Since (R′

i)P/(π) is a DVR (Step 4), it is the
normalization of the integral domain RP/(qiRP+(π)). In particular, (qiRP+
(π)) is a prime ideal, and dimRP/(qiRP + (π)) = 1.

Step 6. Apply Discussion 3.4.2 to M = R/(qi + qj) (i ̸= j), we see that after
localizing R, we may assume that for all P, π, RP/(qiRP + qjRP + (π)) has
finite length. Thus qiRP + (π) ̸= qjRP + (π).

Step 7. Apply Discussion 3.4.2 to M = ⊕iR/qi
R/

√
a

, we see that after localizing
R, we may assume that for all P, π, ∩i(qiRP + (π)) =

√
aRP + (π). Thus

qiRP + (π) are precisely all the minimal primes of aRP + (π).

Step 8. Apply Discussion 3.4.2 to M =
√
a/a, we see that after localiz-

ing R, we may assume that for all P, π,
√
aRP+(π)
aRP+(π) has finite length. Thus

RP/(aRP + (π)) is (R0).

At this point, with the characterization of minimal primes and normal-
izations in the previous steps, and with Lemma 3.1.2, we conclude that for
all P, π, the ring RP/(aRP + (π)) has dimension 1 and satisfies Condition
3.1.1. To see aRP+(π) defines a tame curve, we must show ht(qiRP+(π)) =
ht(P)− 1 for all i.

By what we have done in Steps 4 and 5, π is a regular sequence in both
(R′

i)P and
(

R′
i

R/qi

)
P
. Thus π is a regular sequence in RP/qiRP. Therefore

ht(qiRP + (π)) ≥ ht(qiRP) + h, where h = ht(P/p). Since ht(qiRP) =
ht(qiRp) = d − 1 (Definition 3.2.1(i)), we see ht(qiRP + (π)) ≥ d + h − 1.
Since ht(P) = d+ h (by (i)), we see that ht(qiRP + (π)) = d+ h− 1, thus
aRP + (π) defines a tame curve.

It remains to show the agreement of δ and ∆, assuming R/a contains Fp.
By definition (Notation 3.1.3), it suffices to show, for each i, that β(qi) =

β(qiRp/aRp) and same for γ0. Here qi denotes qiRP+(π)
aRP+(π) .

Step 9. Fix an index i. Let ri = ∩j ̸=iqj , so β(qiRp/aRp) = lRp(Mp), where
M is the finite R-module R′

i/riR
′
i. (Rp/aRp satisfies Condition 3.1.1(iii) so
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we can calculate the length over Rp.) As in Step 7, after localizing R we
may assume for all P, π, riRP + (π) = ∩j ̸=i (qjRP + (π)) . Thus β(qi) =
l(MP/(π)MP). Apply Discussion 3.4.2, we see β(qi) = β(qiRp/aRp) after
localizing R again.

Step 10. Again, fix an index i. Let ci = {a ∈ R | aR′
i ⊆ R/qi}, the conductor

of R′
i over R/qi computed in R, and let M =

R′
i

R/qi
. If x1, . . . , xl generate M

as an R-module, then we have an injection

R/ci → M⊕l

a 7→ (ax1, . . . , axl)

The cokernel of this map has finite length at p since M does. Apply Dis-
cussion 3.4.2, we see that after localizing R, ciRP + (π) is the conductor
of the normalization over RP/(qiRP + (π)) computed in RP. We have
γ(qiRp/aRp) = lRp((R

′
i/ciR

′
i)p) and similar for γ(qi). Thus applying Discus-

sion 3.4.2 again, we see that after localizing R again, γ(qiRp/aRp) = γ(qi).

The proof of Theorem 3.4.1 is now finished.
We arrive at the main theorem of the section.

Theorem 3.4.3. Let R be a Noetherian Fp-algebra. Assume the followings
hold.

(1) R is J-2.
(2) For all primes p′ ⊂ p of R with ht(p/p′) = 1, R∧

p /p
′R∧

p is (R0).
(3) R is (R0).

Then there exist constants δ, µ,∆ ∈ Z≥0 depending only on R, and a quasi-
finite syntomic ring map R → S, such that for all p ∈ Spec(R), there exist
a q ∈ Spec(S) above p and a ring map P → S∧

q that satisfy the followings.
(i) (P,mP ) is a formal power series ring over a field.
(ii) P/mP = κ(q).
(iii) P → S∧

q is finite and generically étale of generic degree ≤ δ.
(iv) qS∧

q /mPS
∧
q is generated by at most µ elements.

(v) There exist e1, . . . , en ∈ S∧
q that map to a basis of S∧

q ⊗P Frac(P ),
such that DiscS∧

q /P (e1, . . . , en) ̸∈ m∆+1
P .

Proof. Let p ∈ Spec(R), d = ht(p). We shall find constants δp, µp,∆p, a
syntomic ring map R → S(p), and a constructible subset C(p) ⊆ Spec(R)
containing p such that for all P ∈ C(p), there exists Q ∈ Spec(S(p)) above
P and a ring map P → S(p)∧Q that satisfy (i)–(v). If this is possible, then
we win since the constructible topology is compact [Stacks, Tag 0901] and
we can take a finite product of S(p)’s with the corresponding C(p)’s covering
Spec(R).

By assumptions, Rp is J-2 and (R0). If d = 0, then there is some f ̸∈ p
such that Rf is regular, so we can just take C(p) = D(f), S(p) = Rf , δp = 1,
µp = ∆p = 0.

https://stacks.math.columbia.edu/tag/0901
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Assume d ≥ 1. By Lemma 2.1.2, there exist elements a1, . . . , ad−1 ∈ pRp

such that all minimal primes of (a) are of height d − 1 and that Rp/(a) is
(R0). Note that then (Rp/(a))

∧ is (R0) by assumption (2).
Let Rp → B be as in Proposition 3.3.2 for the ideal a = (a). B is a

localization of a syntomic Rp-algebra, and B/pB is finite over κ(p), thus
B = Sq for some quasi-finite syntomic R-algebra S and some q ∈ Spec(S).
We also have aB = b0B for some ideal b0 of S generated by d− 1 elements.

Since R is J-2, we can localize S near q to assume S/q regular. Let
δp = δ(B/b0B),∆p = ∆(B/b0B) (Notation 3.1.3), and let µp be the number
of generators of q/b0. Find g ̸∈ q as in Theorem 3.4.1 (for R = S, a = b0,
and p = q), and let S(p) = Sg. Then for all Q ∈ V (qS(p)), there exists
an ideal B of S(p)Q generated by ht(Q)− 1 elements defining a tame curve
(Theorem 3.4.1(i)(ii)) and satisfying δ(S(p)Q/B) = δp and ∆(S(p)Q/B) =
∆p (Theorem 3.4.1(iii)). The form of B as in Theorem 3.4.1(ii) tells us that
Q/B is generated by at most µp elements.

Let P → S(p)∧Q be a map as in Theorem 3.2.3, so (ii) is true by construc-
tion and (i)(iii)(v) follow from the theorem. By construction, BS(p)∧Q ⊆
mPS(p)

∧
Q, so we get (iv). Finally, we let C(p) be the image of V (qS(p))

in Spec(R), which is constructible since R → S(p) is of finite type. This
finishes the proof. □

4. More preliminaries

4.1. Local equidimensionality.

Lemma 4.1.1. Let R be a Noetherian ring that is locally equidimensional
and universally catenary. Let R → S be a flat ring map of finite type. If all
nonempty generic fibers of R → S are equidimensional and have the same
demension, then S is locally equidimensional.

Proof. Let d be the generic fiber dimension. Let q ∈ Spec(S) be above some
p ∈ Spec(R). Let q0 be an arbitrary minimal prime of S contained in q,
lying over p0 ∈ Spec(R). Then p0 is a minimal prime of R by flatness.

By [Stacks, Tag 02IJ], ht(q/q0) = ht(p/p0)+trdegκ(p0) κ(q0)−trdegκ(p) κ(q).
By our assumptions, trdegκ(p0) κ(q0) = d is independent of q0 chosen. Also
ht(p/p0) does not depend on the choice of q0 since R is locally equidimen-
sional. Thus ht(q/q0) does not depend on the choice of q0, so S is locally
equidimensional. □

4.2. Formally (S1) rings. The purpose of this subsection is to relax the
excellence hypothesis in our main theorems. The “excellent” reader can skip
this subsection.

Definition 4.2.1. Let R be a Noetherian ring. We say R is formally (S1)
if R∧

p is (S1) for all p ∈ Spec(R).

Lemma 4.2.2. Let (R,m) be a Noetherian local ring. Then R is formally
(S1) if and only if R∧ is (S1).

https://stacks.math.columbia.edu/tag/02IJ
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Proof. If R∧ is (S1), then R∧ is formally (S1) since a complete local ring is a
G-ring [Stacks, Tag 07PS] and the property (S1) ascends [Stacks, Tag 0339].
Since R → R∧ is faithfully flat it is clear that R is formally (S1). □

Lemma 4.2.3. Let R be a Noetherian ring, R → S a ring map of finite type.
Assume that R → S is flat with (S1) fibers. Then if R is formally (S1), so
is S.

Proof. Let q ∈ Spec(S), we want to show S∧
q is (S1). We may assume (R,m)

local and q ∩R = m. Let Q ∈ Spec(S ⊗R R∧) be above q, so we have

R −−−−→ S −−−−→ Sq −−−−→ S∧
qy y y y

R∧ −−−−→ S ⊗R R∧ −−−−→ (S ⊗R R∧)Q −−−−→ (S ⊗R R∧)∧Q

where the vertical maps are faithfully flat. It suffices to show (S ⊗R R∧)∧Q
is (S1). Since S ⊗R R∧ is of finite type over R∧, it is a G-ring [Stacks, Tag
07PX], so by [Stacks, Tag 0339] it suffices to show S ⊗R R∧ is (S1). By
[Stacks, Tag 0339] again it suffices to show the fibers of R∧ → S ⊗R R∧ are
(S1).

Since the fibers of R → S are (S1), it suffices to show if k is a field, K/k
is a field extension, A is a finite type k-algebra that is (S1), then A⊗k K is
(S1). By [Stacks, Tag 0339], applied to the map A → A⊗k K, it suffices to
show k′ ⊗k K is (S1) for all finitely generated extensions k′/k. This ring is
actually Cohen-Macaulay, see [Stacks, Tag 045M]. □

Lemma 4.2.4. Let R be a Noetherian local ring. If R∧ is (S1), then R∧/pR∧

is (S1) for all minimal primes p ∈ Spec(R).

Proof. Since p ∈ AssR(R), AssR∧(R∧/pR∧) ⊆ AssR∧(R∧), cf. [Stacks, Tag
0312]. Thus R∧/pR∧ has no embedded primes, as desired. □

4.3. Number of generators.

Lemma 4.3.1. Let P be a normal domain, A a finite torsion-free P -algebra
of generic degree δ ≥ 1. Let µ ∈ Z≥0 be such that A is generated by µ
elements as a P -algebra.

Assume that A⊗P Frac(P ) is a product of fields. Then A is generated by
at most δµ elements as a P -module.

Proof. Let a ∈ A. In each factor of A ⊗P Frac(P ), a has a monic minimal
polynomial whose coefficients are in P since P is normal. Since A → A⊗P

Frac(P ) is injective, the product of these minimal polynomials is a monic
polynomial of degree ≤ δ with coefficients in P that has a as a root. The
rest is clear. □

4.4. An easy estimate.

https://stacks.math.columbia.edu/tag/07PS
https://stacks.math.columbia.edu/tag/0339
https://stacks.math.columbia.edu/tag/07PX
https://stacks.math.columbia.edu/tag/0339
https://stacks.math.columbia.edu/tag/0339
https://stacks.math.columbia.edu/tag/0339
https://stacks.math.columbia.edu/tag/045M
https://stacks.math.columbia.edu/tag/0312
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Lemma 4.4.1. Let (P,m, k) be a regular local ring containing Fp. Let d =
dimP . Let n ∈ Z≥0, F ∈ P , F ̸∈ mn+1. Then for all e ∈ Z≥1, l(P/((F ) +

m[pe])) ≤ npe(d−1).

Proof. We may assume F ∈ mn and k infinite. Arguing as in [Nag62,
(40.2)], we can find a regular system of parameters x1, . . . , xd of P such
that l(P/(F, x2, . . . , xd)) = n and that F, x2, . . . , xd is a regular sequence in
P . Then l(P/((F ) +m[pe])) ≤ l(P/((F ) + (x2, . . . , xd)

[pe])) = npe(d−1). □

5. Uniform bound

5.1. Bound from a single Cohen-Gabber type normalization.

Lemma 5.1.1 (cf. [Pol18, proof of Corollary 3.4]). Let A be an Fp-algebra,
m a maximal ideal of A, I an ideal of A, u an element of A such that
(I : u) = m, e a positive integer. Let M be an A-module.

Write J = I + (u). Then the followings hold.

(i) M/(I [p
e]M :M up

e
) ∼= J [pe]M/I [p

e]M .
(ii) If A/m is perfect and M is finitely generated, then for all t ∈ Z≥0,

lA

(
F t
∗M

(I [pe]F t
∗M :F t

∗M
upe)

)
= lA

(
J [pe+t]M

I [pe+t]M

)
< ∞.

Proof. There is a canonical surjection M → J [pe]M/I [p
e]M sending m to

up
e
m, showing (i). For (ii), finiteness follows from the fact that J [pe+t]M

I[p
e+t]M

is a finitely generated (A/m[pe+t])-module. To see the identity, notice that
F t
∗M

(I[p
e]F t

∗M :
Ft∗M

upe )
= F t

∗

(
M

(I[p
e+t]M :Mupe+t )

)
, and that calculating the length of

an (F t
∗m)-primary (F t

∗A)-module over F t
∗A and A are the same since A/m is

perfect. □

Proposition 5.1.2. Let (P,mP , k) be a regular local ring of dimension d
containing Fp, K = Frac(P ). Let A be a finite, generically étale, and torsion-
free P -algebra generated by m ∈ Z>0 elements as a P -module.

Let ∆ ∈ Z≥0. Assume that there exist e1, . . . , en ∈ A that map to a basis
of A⊗P K such that D := DiscA/P (e1, . . . , en) ̸∈ m∆+1

P .
Then for all e ≤ e′ ∈ Z≥1, and all ideals I ⊆ J of A with lA(J/I) < ∞,

we have ∣∣∣∣∣ 1

ped
lA

(
J [pe]

I [pe]

)
− 1

pe′d
lA

(
J [pe

′
]

I [pe
′ ]

)∣∣∣∣∣ ≤ m∆p−elA(J/I).

Proof. If I ⊆ J1 ⊆ J and the statement is true for both inclusions, then
it is true for I ⊆ J by additivity. Thus we may assume lA(J/I) = 1. In
particular mJ ⊆ I for a unique maximal ideal m of A. For a finite m-primary
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A-module X, we have lP (X) = [κ(m) : k]lA(X), so it suffices to show∣∣∣∣∣ 1

ped
lP

(
J [pe]

I [pe]

)
− 1

pe′d
lP

(
J [pe

′
]

I [pe
′ ]

)∣∣∣∣∣ ≤ m∆p−elP (J/I)(1)

when lA(J/I) = 1.
Let (P,mP , k) → (P ′,mP ′ , k′) be a flat map of regular local rings with

mPP
′ = mP ′ , and let A′ = A ⊗P P ′. Then it is clear that A′ is a finite,

generically étale, and torsion-free P ′-algebra generated by m ∈ Z>0 elements
as a P ′-module. The discriminant does not change, and m∆+1

P ′ ∩ P = m∆+1
P

by flatness, so all assumptions hold for P ′ → A′. For any finite length P -
module X, lP (X) = lP ′(X ⊗P P ′). Thus to show (1) when lA(J/I) = 1, it
suffices to show (1) for A = A′ with lA(J/I) arbitrary, and thus it suffices
to show (1) for A = A′ with lA(J/I) = 1. Thus we may assume P complete
and k algebraically closed. In particular, for any finite P -algebra Q and any
finite length Q-module Y , we have lP (Y ) = lQ(Y ).

Write t = e′ − e. Then P 1/pt is a free P -module of rank ptd. Write
H = P 1/pt ⊗P A. We have an exact sequence

H −−−−→ A1/pt −−−−→ L −−−−→ 0

of H-modules, where L is generated by m elements as a P 1/pt-module (since
A1/pt is) and is annihilated by D (Lemma 2.2.2; here we use A torsion-free).

Write J = I + (u), so mPu ⊆ I, and we get an exact sequence

H
(I[p

e]H:Hupe )
−−−−→ A1/pt

(I[p
e]A1/pt :

A1/pt u
pe )

−−−−→ L′ −−−−→ 0

of H-modules with L′ a quotient of L/m[pe]
P L, see [Pol18, proof of Corollary

3.4] for more details. Note that H is a free A-module of rank ptd. Lemma
5.1.1 gives the first inequality in the following chain, and the other two follows
from constructions:

−ptdlP

(
J [pe]/I [p

e]
)
+ lP

(
J [pe

′
]/I [p

e′ ]
)
≤ lP (L

′)

≤ lP

(
L/m

[pe]
P L

)
≤ mlP

(
P 1/pt

m
[pe]
P P 1/pt +D.P 1/pt

)
.

Note that m[pe]
P P 1/pt = (m

1/pt

P )
[pe

′
]
, and D ̸∈ (m

1/pt

P )p
t∆+1 since D ̸∈ m∆+1

P .
By Lemma 4.4.1, the last quantity is at most mpt∆pe

′(d−1). Therefore (recall
t = e′ − e)

− 1

ped
lP

(
J [pe]/I [p

e]
)
+

1

pe′d
lP

(
J [pe

′
]/I [p

e′ ]
)
≤ m∆p−e.(2)
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Note that H → A1/pt is injective since A is generically étale and torsion-
free over P . By Lemma 2.2.2 again, we have an exact sequence

D.A1/pt −−−−→ H −−−−→ L1 −−−−→ 0

where, again, L1 is generated by m elements over P 1/pt since H is, and is
annihilated by D by construction. Since A is torsion-free over P , Dpt is a
nonzerodivisor on A, thus D.A1/pt ∼= A1/pt . By the same argument as above,
we get (2) with the signs on the left hand side reversed. This shows (1) and
thus the proposition. □

Proposition 5.1.3. Let (P,mP , k) be a regular local ring of dimension d
containing Fp, K = Frac(P ). Let A be a P -algebra, N an ideal of A, and
M a finite A-module. Let ∆ ∈ Z≥0,m, e0, b ∈ Z≥1.

Write A = A/N. Assume the followings hold.
(i) A is a finite, generically étale, and torsion-free P -algebra generated

by m elements as a P -module.
(ii) There exist e1, . . . , en ∈ A that map to a basis of A ⊗P K such that

D := DiscA/P (e1, . . . , en) ̸∈ m∆+1
P .

(iii) N[pe0 ] = 0.
(iv) M has a filtration M = Mb ⊋ Mb−1 ⊋ . . . ⊋ M0 = 0 such that

Mj/Mj−1
∼= A as A-modules.

Then for all e ∈ Z, e > e0, and all ideals I ⊆ J of A with lA(J/I) < ∞,
we have∣∣∣∣∣ b

p(e−e0)d
lA

(
J [pe−e0 ]A

I [p
e−e0 ]A

)
− 1

ped
lA

(
J [pe]M

I [pe]M

)∣∣∣∣∣ ≤ pe0b2m∆p−elA(J/I).

Proof. As before, we may assume lA(J/I) = 1, J = I + (u); and we may as-
sume P complete and k algebraically closed. Calculation of lengths therefore
does not depend on the base ring chosen.

Write H = F e0
∗ P ⊗P A and H = F e0

∗ P ⊗P A. As seen in the proof of
Proposition 5.1.2, there exists an exact sequence

0 −−−−→ H −−−−→ F e0
∗ A −−−−→ L −−−−→ 0

where L is annihilated by D and is generated by m elements as a F e0
∗ P -

module. By (iv), as an F e0
∗ A-module, F e0

∗ M is a successive extension of b
isomorphic copies of F e0

∗ A, thus the same is true for F e0
∗ M as an H-module.

By (iii), F e0
∗ M is an H-module. Thus the exact sequence above implies the

existence of an exact sequence of H-modules

0 −−−−→ H
⊕b −−−−→ F e0

∗ M −−−−→ L′ −−−−→ 0

where L′ is a successive extension of b isomorphic copies of L. In particular,
L′ is annihilated by Db ̸∈ mb∆+1

P and is generated by bm elements as an
F e0
∗ P -module.
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We now proceed as in the proof of Proposition 5.1.2. Taking colon with
respect to I [p

e−e0 ] and up
e−e0 , Lemma 5.1.1 gives

−bpe0dlP

(
J [pe−e0 ]A

I [p
e−e0 ]A

)
+ lP

(
J [pe]M

I [pe]M

)
≤ lP

(
L′

m
[pe−e0 ]
P L′

)
.

By Lemma 4.4.1, lP (L′/m
[pe−e0 ]
P L′) ≤ bmpe0b∆pe(d−1). Thus

− b

p(e−e0)d
lA

(
J [pe−e0 ]A

I [p
e−e0 ]A

)
+

1

ped
lA

(
J [pe]M

I [pe]M

)
≤ pe0b2m∆p−e.(3)

The exact sequence above gives

Db.F e0
∗ M −−−−→ H

⊕b −−−−→ L′′ −−−−→ 0

where L′′ is annihilated by Db by construction, and is generated by bm
elements as a F e0

∗ P -module since A is generated by m elements as a P -
module. By (iv), M is a torsion-free P -module. Thus Db is a nonzerodivisor
on F e0

∗ M and Db.F e0
∗ M ∼= F e0

∗ M . This gives the inequality (3) with signs
on the left hand side reversed, showing the proposition. □

Corollary 5.1.4. Notations and assumptions as in Proposition 5.1.3. Then
for all e ≤ e′ ∈ Z, e > e0, and all ideals I ⊆ J of A with lA(J/I) < ∞, we
have∣∣∣∣∣ 1

ped
lA

(
J [pe]M

I [pe]M

)
− 1

pe′d
lA

(
J [pe

′
]M

I [pe
′ ]M

)∣∣∣∣∣ ≤ (1+(1+pe−e′)pe0b)bm∆p−elA(J/I).

Note that pe−e′ ≤ 1.

Proof. Immediate from Propositions 5.1.2 and 5.1.3. □

5.2. Uniform bound in excellent and less-excellent rings. We shall
use the following fact.

Theorem 5.2.1. Let R be a Noetherian Fp-algebra. Assume that R/p is
J-0 for all p ∈ Spec(R).

Then for every R-module M , there exists a constant C = C(M) such that
for all p ∈ Spec(R) and all e ∈ Z≥1, l(Mp/p

[pe]Mp) ≤ Cpe dimMp.

Proof. This is [PTY, Theorem 2.11], and also follows from [Smi16, Lemma
15], where R is assumed to be excellent. However, both proofs work under
the assumption R/p is J-0 for all p ∈ Spec(R). □

Consider the following condition on a Noetherian ring R.

Condition 5.2.2.
(i) R is J-2.
(ii) For all primes p′ ⊂ p of R with ht(p/p′) = 1, (Rp/p

′Rp)
∧ is (R0).

(iii) R is universally catenary.
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Remark 5.2.3. An excellent R, or more generally a J-2, Nagata, and univer-
sally catenary R, satisfies Condition 5.2.2; and Rred is formally (S1) (Defi-
nition 4.2.1) for such R. See [Stacks, Tag 0BJ0].

Theorem 5.2.4 (cf. [Pol18, Theorem 4.4]). Let R be a Noetherian Fp-
algebra that satisfies Condition 5.2.2.

Then for every finite R-module M , there exists a constant C(M) with the
following property. For all p ∈ Spec(R) such that (R/

√
AnnR(M))∧p is (S1),

all ideals I ⊆ J of Rp with lRp(J/I) < ∞, and all e ≤ e′ ∈ Z≥1, the following
holds.∣∣∣∣∣ 1

pe dimMp
lRp

(
J [pe]Mp

I [pe]Mp

)
− 1

pe
′ dimMp

lRp

(
J [pe

′
]Mp

I [pe
′ ]Mp

)∣∣∣∣∣ ≤ C(M)p−elRp(J/I).

Here by convention the left hand side is zero if Mp = 0.

Proof. We may replace R by R/AnnR(M), so dimMp = ht p for all p. Let
p0 be a minimal prime of R. Then there exists a submodule N = N(p0)
of M that is a successive extension of isomorphic copies of R/p0, such that
Np0 = Mp0 , by the theory of associated primes.

Let N ′ = ⊕p0N(p0) (not necessarily a submodule of M), so M and N ′ are
isomorphic at all minimal primes of R, in particular AnnR(N

′) is nilpotent.
Apply the argument in [Pol18, proof of Corollary 3.4], using Theorem 5.2.1
instead of [Pol18, Proposition 3.3], we see that it suffices to prove the result
for N ′.

In fact, it suffices to prove the result for each N(p0). Indeed, assume the
result is true for each N(p0) and let C(p0) be the corresponding constant.
Let C ′(p0) be the constant as in Theorem 5.2.1 for N(p0) and C ′′(p0) =
max{2C ′(p0), C(p0)}. We claim that

∑
p0
C ′′(p0) works for N ′. To see this,

let p ∈ Spec(R) be such that (Rred)
∧
p is (S1). Let p0 be a minimal prime of

R contained in p. Since N ′ is the direct sum of all N(p0), it suffices to show∣∣∣∣∣ 1

pe ht p
lRp

(
J [pe]N(p0)p

I [pe]N(p0)p

)
− 1

pe′ ht p
lRp

(
J [pe

′
]N(p0)p

I [pe
′ ]N(p0)p

)∣∣∣∣∣ ≤ C ′′(p0)p
−elRp(J/I).

If ht(p/p0) < ht(p), then this follows from [Pol18, Lemma 3.2] and the choice
of C ′(p0). Otherwise, ht(p/p0) = ht(p). Since (R/p0)

∧
p is (S1), see Lemma

4.2.4, the desired inequality follows from the choice of C(p0).
Thus we may assume M is a successive extension of isomorphic copies of

R/p0 where p0 is a fixed minimal prime of R. Replace R by R/AnnR(M)
once again, we may assume p0 is the nilradical of R. Write R = R/p0. Let
b = lRp0

(Mp0) and let e0 ∈ Z≥1 be such that (p0)[p
e0 ] = 0. By Theorem 5.2.1

and [Pol18, Lemma 3.2], it suffices to find a constant C = C(M) such that
the desired inequality holds for all e′ ≥ e > e0.

Note that R is (R0) since it is an integral domain. Let R → S and δ, µ
and ∆ be as in Theorem 3.4.3. We shall show that C = (1 + 2pe0b)bδµ∆
works. Let R → S be a syntomic ring map that lifts R → S, see [Stacks, Tag

https://stacks.math.columbia.edu/tag/0BJ0
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07M8]. Then p0S is a nilpotent ideal of S, so we can identify Spec(S) and
Spec(S). Fix p ∈ Spec(R) with R

∧
p (S1), and let q ∈ Spec(S), P → S

∧
q be

as in the statement of Theorem 3.4.3. Lift the map P → S
∧
q to a ring map

P → S∧
q , possible as P is formally smooth over Fp [Stacks, Tag 07NL]. Note

that R → S is flat quasi-finite, so Rp → S∧
q is flat local with zero-dimensional

closed fiber. Thus for all finite length Rp-modules X, lRp(X)lS∧
q
(S∧

q /pS
∧
q ) =

lS∧
q
(X ⊗Rp S∧

q ). Thus it suffices to prove an estimate as in the statement
of Corollary 5.1.4 for the S∧

q -module M ⊗R S∧
q with the correct constants

b,m = δµ, and ∆.
It thus suffices to verify the assumptions of Corollary 5.1.4 for P → S∧

q .
Recall that R is an integral domain, and is universally catenary by assump-
tion. Thus Sq is equidimensional (Lemma 4.1.1 since R → S is flat quasi-
finite) and universally catenary, hence S∧

q is equidimensional (Ratliff’s result,
[Stacks, Tag 0AW3]). Thus all minimal primes of S∧

q are above (0) ⊆ P . By
Lemmas 4.2.2 and 4.2.3, S

∧
q is (S1), thus we see S

∧
q is a torsion-free P -

module. Note that S
∧
q is a finite and generically étale P -algebra (Theorem

3.4.3(iii)).
By Theorem 3.4.3(iv), we can find y1, . . . , yµ ∈ q such that qS∧

q = mPS
∧
q +

(y). Let S′ = P [y1, . . . , yµ] ⊆ S
∧
q , and m′ = mPS

′ + (y). Then we see that
(S′,m′) is a local ring and that S

∧
q = S′ + m′S

∧
q by Theorem 3.4.3(ii).

Therefore S′ = S
∧
q . By Lemma 4.3.1 (and Theorem 3.4.3(iii)), we see that

S
∧
q is generated by at most δµ elements as a P -module.
Let e1, . . . , en ∈ S

∧
q be as in Theorem 3.4.3(v), and let D = Disc

S
∧
q /P

(e1, . . . , en).

Then D ̸∈ m∆+1
P .

We have (p0S∧
q )

[pe0 ] = 0 since p0[p
e0 ] = 0. Since M is a successive extension

of b isomorphic copies of R, M⊗RS
∧
q is a successive extension of b isomorphic

copies of S∧
q . We have verified all assumptions of and checked all constants

in Corollary 5.1.4, showing what we want. □

In view of Remark 5.2.3, the following is a special case of the theorem.

Corollary 5.2.5. Let R be a Noetherian Fp-algebra. Assume that R is
excellent, or more generally J-2, Nagata, and universally catenary.

Then for every finite R-module M , there exists a constant C(M) with
the following property. For all p ∈ Spec(R), all ideals I ⊆ J of Rp with
lRp(J/I) < ∞, and all e ≤ e′ ∈ Z≥1, the following holds.

∣∣∣∣∣ 1

pe dimMp
lRp

(
J [pe]Mp

I [pe]Mp

)
− 1

pe
′ dimMp

lRp

(
J [pe

′
]Mp

I [pe
′ ]Mp

)∣∣∣∣∣ ≤ C(M)p−elRp(J/I).

https://stacks.math.columbia.edu/tag/07M8
https://stacks.math.columbia.edu/tag/07NL
https://stacks.math.columbia.edu/tag/0AW3
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6. Applications: semi-continuity

6.1. Hilbert-Kunz multiplicity. For a Noetherian local Fp-algebra (R,m),

denote by λe(R) the number l(R/m[pe])
pe dimR . We have, by definition, eHK(R) =

lime λe(R), and the limit exists [Mon83].
The following slightly strengthens [SB79].

Lemma 6.1.1. Let R be a Noetherian Fp-algebra, p ∈ Spec(R). Assume
that R/p is J-0.

Let e be a positive integer. Then for some g ̸∈ p and all P ∈ D(g)∩V (p),
λe(Rp) = λe(RP).

Proof. We may assume R/p regular. By Theorem 3.4.1(i), we may as-
sume for all P ∈ V (p), ht(P) = ht(p) + ht(P/p). It remains to ap-
ply Discussion 3.4.2 to the module M = R/p[p

e] and the regular sequence
π1 = tp

e

1 , . . . , πh = tp
e

h , where t1, . . . , th ∈ RP map to a regular sequence of
parameters of RP/pRP. □

Corollary 6.1.2. Let R be a Noetherian Fp-algebra. Assume that R/p is
J-0 for all p ∈ Spec(R), and that R is catenary and locally equidimensional.

Let e be a positive integer. Then the function p 7→ λe(Rp) is constructible
and upper semi-continuous.

Proof. By Lemma 6.1.1 our function is constructible. We have ht(P) =
ht(p) + ht(P/p) for all p ⊆ P ∈ Spec(R), since R is catenary and locally
equidimensional. By [Kun76, Corollary 3.8], our function is non-decreasing
along specialization. Thus our function is upper semi-continuous by general
topology [Stacks, Tag 0542]. □

Theorem 6.1.3 (cf. [Smi16, Theorem 23]). Let R be a Noetherian Fp-
algebra. Assume that R satisfies Condition 5.2.2, and that Rred is formally
(S1) (Definition 4.2.1). (For example, if R is excellent, or if R is J-2,
Nagata, and universally catenary, see Remark 5.2.3.)

If R is locally equidimensional, then the function p 7→ eHK(Rp) is upper
semi-continuous.

Proof. Apply Theorem 5.2.4 to M = R, I = pRp, J = Rp, we see that our
function is the uniform limit of the functions p 7→ λe(Rp). These functions
are upper semi-continuous by Corollary 6.1.2. Thus our function is upper
semi-continuous as well. □

6.2. F -signature. For a Noetherian local Fp-algebra (R,m), denote by se(R)
the eth normalized F -splitting number as in [EY11, Definition 1.1]. The limit
s(R) = lim se(R) is called the F -signature of R. The limit was first shown to
exist in [Tuc12]. (We also recover the existence in Proposition 6.2.4 below.)

We use the following facts.

Fact 6.2.1. Let (R,m) → (R′,m′) be a flat map of Noetherian local Fp-
algebras with mR′ = m′. Then se(R) = se(R

′) for all e, see [Yao06, Remark
2.3(3)].

https://stacks.math.columbia.edu/tag/0542
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Fact 6.2.2. For a Noetherian local Fp-algebra (R,m), se(R) > 0 for some
e if and only if se(R) > 0 for all e, if and only if R is F -pure. Indeed,
using the notations preceding [EY11, Definition 1.1], se(R) > 0 if and only if
R(e)⊗R k → R(e)⊗RE is nonzero, if and only if k is not killed in R(e)⊗RE,
if and only if R → R(e) is pure, see [Fed83, Proposition 1.3(5)].

Fact 6.2.3. Let (R,m) be a Noetherian local Fp-algebra. For two positive in-
tegers e, e′, there exists an m-primary ideal I and an element u ∈ (I : m) such

that se(R) = p−edimRl((I, u)[p
e]/I [p

e]) and se′(R) = p−e′ dimRl((I, u)[p
e′ ]/I [p

e′ ]).
Indeed, by Fact 6.2.1 we may assume R complete, and by Fact 6.2.2 we may
assume R F -pure (otherwise take I = m and u = 0), in particular reduced,
so [Pol18, Lemma 5.4] applies.

Proposition 6.2.4. Let R be a Noetherian ring that satisfies Condition
5.2.2. Let C = C(R) be as in Theorem 5.2.4.

Then for all p ∈ Spec(R) and all e ≤ e′ ∈ Z≥1, |se(Rp)−se′(Rp)| ≤ Cp−e.

Proof. Let p ∈ Spec(R). If R∧
p is not reduced, then se(Rp) = se′(Rp) = 0,

see Facts 6.2.2 and 6.2.1. So we only need to show the inequality for those
p with R∧

p reduced. By Fact 6.2.3, we need to show∣∣∣∣ 1

pe ht p
lRp

(
J [pe]/I [p

e]
)
− 1

pe′ ht p
lRp

(
J [pe

′
]/I [p

e′ ]
)∣∣∣∣ ≤ Cp−e.

where I is a pRp-primary ideal of Rp, and J = (I, u) for some u ∈ (I :
pRp). In particular lRp(J/I) ≤ 1. The inequality now follows from Theorem
5.2.4. □

Lemma 6.2.5. Let R be a Noetherian ring such that R/p is J-0 for all
p ∈ Spec(R).

Assume that either R is Gorenstein, or that R is a locally equidimensional
quotient of a regular Noetherian ring. Then for all e, the function p 7→ se(Rp)
is lower semi-countinuous.

Proof. This is [EY11, Theorems 3.4 and 4.2], except that R is assumed to
be excellent there. However, from the proof it is clear that R/p being J-0
for all p ∈ Spec(R) is enough. □

The following result is likely to be well-known; we include it for complete-
ness.

Lemma 6.2.6. Let (R,m, k) be a Noetherian local Fp-algebra. Then the
followings hold.

(i) If s(R) > 0, then R is strongly F -regular.
(ii) If R is a G-ring then the converse to (i) holds.

Proof. Assume s(R) > 0. Let (R′,m′, k′) be a Noetherian local flat R-algebra
with R′ complete, mR′ = m′, and k′ algebraically closed. Fact 6.2.1 shows
s(R′) > 0, and [AL02] shows R′ stongly F -regular. Thus R is stongly F -
regular by [Has10, Lemma 3.17].
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Conversely, assume R is a G-ring and strongly F -regular. Then R is
normal [Has10, Corollary 3.7], thus excellent, cf. [Stacks, Tags 0C23 and
0AW6]. By [Has10, Lemma 3.28] the completion R∧ is strongly F -regular.
By [Has10, Lemma 3.30] there exists a flat local ring map R∧ → R′ such
that R′ is F -finite and strongly F -regular, and that mR′ is the maximal ideal
of R′. By [AL02], s(R′) > 0, and s(R) = s(R′) by Fact 6.2.1. □

Theorem 6.2.7 (cf. [Pol18, Theorem 5.6]). Let R be a Noetherian Fp-
algebra that satisfies Condition 5.2.2(i)(ii). Assume that either R is Goren-
stein, or that R is a quotient of a regular Noetherian ring. Then the function
p 7→ s(Rp) is lower semi-countinuous.

Proof. Note that s(Rp) ≥ 0 for all p. If s(Rp) > 0 for some p, then Rp

is normal by Lemma 6.2.6 and [Has10, Corollary 3.7]. Since R is J-2, the
normal locus of R is open, see [EGA IV2, Corollaire 6.13.5]. Thus we may
assume R normal, in particular locally equidimensional.

Since a Cohen-Macaulay ring is universally catenary [Stacks, Tag 00NM], R
satisfies Condition 5.2.2. By Proposition 6.2.4 the function p 7→ s(Rp) is the
uniform limit of the functions p 7→ se(Rp) which are lower semi-countinuous
by Lemma 6.2.5, thus p 7→ s(Rp) is lower semi-countinuous. □

Corollary 6.2.8. Let R be a Noetherian quasi-excellent Fp-algebra. Assume
that R is either Gorenstein or a quotient of a regular Noetherian ring. Then
the locus

{p ∈ Spec(R) | Rp is strongly F -regular}
is open.

Proof. For p ∈ Spec(R), Rp is strongly F -regular if and only if s(Rp) > 0,
see Lemma 6.2.6. □

Remark 6.2.9. A quasi-excellent quotient of a regular ring is always a quo-
tient of a quasi-excellent regular ring. This follows immediately from [KS21].

Remark 6.2.10. Kevin Tucker informed the author that he was able to prove
the openness of the strongly F -regular locus for any quotient of a regular
Fp-algebra via a different method.
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