UNIFORM BOUNDS IN EXCELLENT RINGS AND APPLICATIONS TO SEMICONTINUITY

SHIJI LYU

Abstract

This is a draft of a paper in preparation on certain uniform behaviours on the spectrum of an excellent \mathbf{F}_{p}-algebra.

1. Summary of Results

In this section, let R be an excellent (Noetherian) \mathbf{F}_{p}-algebra.
Theorem 1.0.1 (a uniform version of the Cohen-Gabber theorem; see Theorem 3.4.3). Assume that R is (R_{0}). Then there exist constants $\delta, \mu, \Delta \in \mathbf{Z}_{\geq 0}$ depending only on R, and a quasi-finite, syntomic ring map $R \rightarrow S$, such that for all $\mathfrak{p} \in \operatorname{Spec}(R)$, there exist a $\mathfrak{q} \in \operatorname{Spec}(S)$ above \mathfrak{p} and a ring map $P \rightarrow S_{\mathfrak{q}}^{\wedge}$ that satisfy the followings.
(i) $\left(P, \mathfrak{m}_{P}\right)$ is a formal power series ring over a field.
(ii) $P / \mathfrak{m}_{P}=\kappa(\mathfrak{q})$.
(iii) $P \rightarrow S_{\mathfrak{q}}^{\wedge}$ is finite and generically étale of generic degree $\leq \delta$.
(iv) $\mathfrak{q} S_{\mathfrak{q}}^{\wedge} / \mathfrak{m}_{P} S_{\mathfrak{q}}^{\wedge}$ is generated by at most μ elements.
(v) There exist $e_{1}, \ldots, e_{n} \in S_{\mathfrak{q}}^{\wedge}$ that map to a basis of $S_{\mathfrak{q}}^{\wedge} \otimes_{P} \operatorname{Frac}(P)$ (as an $\operatorname{Frac}(P)$-vector space $)$, such that $\operatorname{Disc}_{S_{\hat{\mathfrak{q}}} / P}\left(e_{1}, \ldots, e_{n}\right) \notin \mathfrak{m}_{P}^{\Delta+1}$.
The next few results are established in [Smi16] and [Pol18] for F-finite rings or rings essentially of finite type over an excellent local ring.

Theorem 1.0.2 (see Corollary 5.2.5). For every finite R-module M, there exists a constant $C(M)$ with the following property. For all $\mathfrak{p} \in \operatorname{Spec}(R)$, all ideals $I \subseteq J$ of $R_{\mathfrak{p}}$ with $l_{R_{\mathfrak{p}}}(J / I)<\infty$, and all $e \leq e^{\prime} \in \mathbf{Z}_{\geq 1}$, the following holds.
$\left|\frac{1}{p^{e \operatorname{dim} M_{\mathfrak{p}}}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e}\right]} M_{\mathfrak{p}}}{I^{\left[p^{e}\right]} M_{\mathfrak{p}}}\right)-\frac{1}{p^{e^{\prime} \operatorname{dim} M_{\mathfrak{p}}}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e^{\prime}}\right]} M_{\mathfrak{p}}}{I^{\left[p^{\left.e^{e}\right]}\right]} M_{\mathfrak{p}}}\right)\right| \leq C(M) p^{-e} l_{R_{\mathfrak{p}}}(J / I)$.
Here by convention the left hand side is zero if $M_{\mathfrak{p}}=0$.
Theorem 1.0.3 (see Theorem 6.1.3). Assume that R is locally equidimensional. Then the function $\mathfrak{p} \mapsto e_{\mathrm{HK}}\left(R_{\mathfrak{p}}\right)$ is upper semi-continuous on R.

Theorem 1.0.4 (see Theorem 6.2.7 and Corollary 6.2.8; restriction comes from [EY11]). Assume that R is either a quotient of a regular ring, or Gorenstein. Then the function $\mathfrak{p} \mapsto s\left(R_{\mathfrak{p}}\right)$ is lower semi-continuous on R, and the strongly F-regular locus of R is open.

2. Preliminaries

2.1. Local Bertini. We recall the following classical theorem. See also [Tri94] and [OS15].

Theorem 2.1.1 ([Fle77, Satz 2.1]). Let (A, \mathfrak{m}) be a Noetherian local ring containing a field. ${ }^{1}$ Let I be a proper ideal of A. Let $D(I)$ be the open subset $\operatorname{Spec}(A) \backslash V(I)$ of $\operatorname{Spec}(A)$. Let Σ be a finite subset of $D(I)$.

Then there exists an element $a \in I$ that is not contained in any prime in Σ, and is not contained in $\mathfrak{p}^{(2)}$ for any $\mathfrak{p} \in D(I)$.

We shall use the following consequence.
Lemma 2.1.2. Let (A, \mathfrak{m}) be a Noetherian J-2 local ring that is $\left(R_{0}\right)$. Assume $d:=\operatorname{dim} A \geq 1$. Then there exist elements $a_{1}, \ldots, a_{d-1} \in \mathfrak{m}$ such that
(i) a_{j+1} is not in any minimal prime of $\left(a_{1}, \ldots, a_{j}\right)$; and that
(ii) $A /\left(a_{1}, \ldots, a_{d-1}\right)$ is $\left(R_{0}\right)$.

Proof. This follows from the argument in [Fle77, §3]. We reproduce the proof for the reader's convenience.

We can assume $d>1$. By induction, it suffices to find an element $a_{1}=$ $a \in \mathfrak{m}$ not in any minimal prime of A such that $A / a A$ is $\left(R_{0}\right)$.

Since A is J-2, the singular locus $\operatorname{Sing}(A)$ is closed in $\operatorname{Spec}(A)$. Since A is $\left(R_{0}\right), \Sigma_{1}=\{\mathfrak{p} \in \operatorname{Sing}(A) \mid h t \mathfrak{p} \leq 1\}$ is finite. Let Σ_{2} be the set of minimal primes of A. Then $\mathfrak{m} \notin \Sigma_{1} \cup \Sigma_{2}$ since $d>1$.

By Theorem 2.1.1, we can find $a \in \mathfrak{m}$ such that a is not in any prime in $\Sigma_{1} \cup \Sigma_{2}$ and that $a \notin \mathfrak{p}^{(2)}$ for all $\mathfrak{p} \in \operatorname{Spec}(A) \backslash\{\mathfrak{m}\}$. It is then straightforward to verify that $A / a A$ is $\left(R_{0}\right)$.
2.2. Discriminant. We review some basic facts about the discriminant we will use, which is related to the Dedekind different, [Stacks, Tag 0BW0], cf. [Lan86, Chapter III].

We let A be a normal domain, K its fraction field, B a finite A-algebra, and we assume $B \otimes_{A} K$ finite étale over K of degree n.

Definition 2.2.1. Let $e_{1}, \ldots, e_{n} \in B$ be elements that map to a basis of $B \otimes_{A} K$. The discriminant of e_{1}, \ldots, e_{n} is

$$
\operatorname{Disc}_{B / A}\left(e_{1}, \ldots, e_{n}\right)=\operatorname{det}\left(\operatorname{Tr}_{B / A}\left(e_{i} e_{j}\right)_{i, j}\right) .
$$

where $\operatorname{Tr}_{B / A}$ denotes the Galois-theoretic trace map $B \otimes_{A} K \rightarrow K$.
Since B is integral over A and A is normal, we have $\operatorname{Tr}_{B / A}(B) \subseteq A$, and thus $\operatorname{Disc}_{B / A}\left(e_{1}, \ldots, e_{n}\right) \in A$. Moreover, it is clear that the discriminant is unchanged along a flat base change $A \rightarrow A^{\prime}$ of normal domains.

This notion is useful to us later because of the following result.

[^0]Lemma 2.2.2. Let $A, B, e_{1}, \ldots, e_{n}$ be as above. If B is a torsion-free A module and A contains \mathbf{F}_{p}, then for any $m \in \mathbf{Z}_{\geq 1}$, as subsets of $\left(B \otimes_{A} K\right)^{1 / p^{m}}$

$$
\operatorname{Disc}_{B / A}\left(e_{1}, \ldots, e_{n}\right) \cdot B^{1 / p^{m}} \subseteq A^{1 / p^{m}}[B] .
$$

Proof. This is [HH90, Lemma 6.5] for $(-)^{1 / p^{\infty}}$, but the same proof works in the case of $(-)^{1 / p^{m}}$.

We need a compatibility result.
Lemma 2.2.3. Assume that (A, \mathfrak{m}) is local and that $A \rightarrow B$ is finite étale. Let $e_{1}, \ldots, e_{n} \in B$ be a basis of B as an A-module. Then

$$
\overline{\operatorname{Disc}_{B / A}\left(e_{1}, \ldots, e_{n}\right)}=\operatorname{Disc}_{(B / \mathfrak{m} B) /(A / \mathfrak{m})}\left(\overline{e_{1}}, \ldots, \overline{e_{n}}\right)
$$

where $\overline{(-)}$ means mod \mathfrak{m} or mod $\mathfrak{m} B$.
Proof. Let $z_{i j k l}$ be elements of B such that $e_{i} e_{j} e_{k}=\sum_{l} z_{i j k l} e_{l}$. Then $\operatorname{Tr}_{B / A}\left(e_{i} e_{j}\right)=\sum_{k} z_{i j k k}$, so $\operatorname{Disc}_{B / A}\left(e_{1}, \ldots, e_{n}\right)=\operatorname{det}\left(\left(\sum_{k} z_{i j k k}\right)_{i, j}\right)$. The same formulas compute the right hand side, showing the desired identity.

We need an explicit computation.
Lemma 2.2.4. Let $A \rightarrow B$ be a finite map of DVRs. Let $K=\operatorname{Frac}(A)$, $L=\operatorname{Frac}(B)$, and $s=[L: K]$. Assume that $s \in A^{\times}$, and that the residue fields of A and B are the same (i.e. L / K is totally tamely ramified). Let v_{A} and v_{B} be the discrete valuation of A and B respectively.

Assume that there exists $y \in B$ such that $v_{B}(y)$ and s are relatively prime, and that $x:=y^{s} \in A$. Then $v_{A}\left(\operatorname{Disc}_{B^{\prime} / A}\left(y, \ldots, y^{s-1}, y^{s}\right)\right)=(s+1) v_{A}(x)$ for any sub- A-algebra B^{\prime} of B that contains y.
Proof. By assumptions L / K is separable and $\left.v_{B}\right|_{A}=s v_{A}$. Since $v_{B}(y)$ and s are relatively prime, it is clear that $y, \ldots, y^{s-1}, y^{s}$ is a basis of L / K, thus for any sub- A-algebra B^{\prime} that contains $y, L=\operatorname{Frac}\left(B^{\prime}\right)$, so we may assume $B^{\prime}=B$.

Since $x=y^{s} \in A$, we can easily write down the matrix of a power of y as a linear transformation with respect to the basis $y, \ldots, y^{s-1}, y^{s}$, and it follows that $\operatorname{Tr}\left(y^{b s}\right)=s x^{b}$ and $\operatorname{Tr}\left(y^{a}\right)=0$ if s does not divide a. Thus the matrix $\operatorname{Tr}\left(y^{i} y^{j}\right)$ has exactly one nonzero entry in each row, which is $s x$ in the first $s-$ 1 rows and $s x^{2}$ in the last one. Since $s \in A^{\times}, v_{A}\left(\operatorname{Disc}_{B^{\prime} / A}\left(y, \ldots, y^{s-1}, y^{s}\right)\right)=$ $(s+1) v_{A}(x)$ as desired.
2.3. A non-completed version of Cohen-Gabber. We will need the following version of the Cohen-Gabber structure theorem [GO08, Théorème 7.1].

Theorem 2.3.1. Let $\left(A^{n c}, \mathfrak{m}^{n c}, k\right)$ be a Noetherian local \mathbf{F}_{p}-algebra and let (A, \mathfrak{m}, k) be the reduction of the completion of $A^{n c}$. Assume that A is equidimensional, and assume that for each minimal prime \mathfrak{p} of $A^{n c}$, there is exactly one minimal prime of A above \mathfrak{p}.

Let $d=\operatorname{dim} A$. Then there exists a set $\Lambda \subseteq A^{n c}$ and a system of parameters $t_{1}, \ldots, t_{d} \in \mathfrak{m}^{n c}$ with the following properties.
(i) Λ maps to a p-basis of k.
(ii) For the unique coefficient field κ of A containing Λ (see [Bou83, chapitre $I X, \xi 2$, Théorème 1]), A is finite and generically étale over the subring $\kappa\left[\left[t_{1}, \ldots, t_{d}\right]\right]$.
Proof. We run the argument in $[G O 08, \S 7]$ for the ring A, while making sure that the elements of concern belong in the ring $A^{n c}$. We start with the constructions in $[G O 08,(7.2)]$. Let $\mathfrak{p}_{1}^{n c}, \ldots, \mathfrak{p}_{c}^{n c}$ be the minimal primes of $A^{n c}$, so by our assumption, A has exactly c minimal primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{c}$ with $\mathfrak{p}_{i} \cap A^{n c}=\mathfrak{p}_{i}^{n c}$. Fix a set $\Lambda \subseteq A^{n c}$ that maps to a p-basis of k and let κ be the unique coefficient field of A containing Λ. For a finite set $e \subseteq \Lambda$, let $\kappa_{e}=\kappa^{p}(\Lambda \backslash e)$.

By [GO08, (7.3)], we can find an e such that for each ring $B=A / \mathfrak{p}_{i}$, we have

$$
\operatorname{rank} \hat{\Omega}_{B / \kappa_{e}}^{1}=d+|e| .
$$

Now, we observe that for every ideal I of $A^{n c}$, the sets $\{\mathrm{d}(i) \mid i \in I\}$ and $\{\mathrm{d}(i) \mid i \in I B\}$ generates the same submodule of $\hat{\Omega}_{B / \kappa_{e}}^{1}$. This is because $\hat{\Omega}_{B / \kappa_{e}}^{1}$ is a finite module over B, so all its submodules are closed, and because $\{\mathrm{d}(i) \mid i \in I\}$ is dense in $\{\mathrm{d}(i) \mid i \in I B\}$, since $\mathrm{d}\left(\mathfrak{m}^{N} B\right) \subseteq \mathfrak{m}^{N-1} \hat{\Omega}_{B / \kappa_{e}}^{1}$. Applying this to $I=\mathfrak{p}_{1}^{n c} \cap \ldots \cap \mathfrak{p}_{j}^{n c}$, noting that $I A \nsubseteq \mathfrak{p}_{j+1}$ since $\mathfrak{p}_{j+1} \cap A^{n c}=$ $\mathfrak{p}_{j+1}^{n c}$, we see that the elements m_{i}, m_{i}^{\prime} in [GO08, (7.4)] can be chosen to be in $A^{n c}$. Finally, applying the observation to $I=A^{n c}$, we see that the elements f_{i} in [GO08, (7.5)] can be chosen in $A^{n c}$. This concludes the proof.

3. Tame Ramification

3.1. A condition of one-dimensional local rings. We consider the following condition of a Noetherian local ring A of dimension 1.

Condition 3.1.1.

(i) A^{\wedge} is $\left(R_{0}\right)$.
(ii) $(A / \mathfrak{p})^{\nu}$ is local for all minimal primes \mathfrak{p} of $A .^{2}$
(iii) The map $A \rightarrow(A / \mathfrak{p})^{\nu}$ induces an isomorphism of residue fields for all minimal primes \mathfrak{p} of $A{ }^{3}$
Note that if A is complete, or more generally Henselian, then (ii) is automatic; see [Stacks, Tag 0BQ0].
Lemma 3.1.2. Let A be a Noetherian local ring of dimension 1. The followings are equivalent:
(i) the completion A^{\wedge} of A is $\left(R_{0}\right)$; and
(ii) A is $\left(R_{0}\right)$, and the normalization of A is finite.

[^1]If this holds, then $\left(A^{\wedge}\right)_{\mathrm{red}}=\left(A_{\mathrm{red}}\right)^{\wedge}$ and $A^{\wedge \nu}=A^{\nu} \otimes_{A} A^{\wedge}$.
Proof. Assume first that A^{\wedge} is $\left(R_{0}\right)$, so A is also $\left(R_{0}\right)$. Let \mathfrak{N} be the nilradical of A. Then $\mathfrak{N}\left(A^{\wedge}\right)_{P}=0$ for all minimal primes P of A^{\wedge}, thus $A^{\wedge} / \mathfrak{N} A^{\wedge}=\left(A_{\text {red }}\right)^{\wedge}$ is $\left(R_{0}\right)$. Since A is one-dimensional, $A_{\text {red }}$ is CohenMacaulay, thus $\left(A_{\mathrm{red}}\right)^{\wedge}$ is Cohen-Macaulay, thus reduced since it is $\left(R_{0}\right)$. Finiteness of normalization is then classical, see for example [Stacks, Tag 032Y].

Now assume (ii). We need to show (i) and $A^{\wedge \nu}=A^{\nu} \otimes_{A} A^{\wedge}$. Since A^{ν} is finite over A, we see $A^{\nu} \otimes_{A} A^{\wedge}$ is the completion of A^{ν} as a semi-local ring. Since A^{ν} is normal of dimension 1, it is regular, hence so is $A^{\nu} \otimes_{A} A^{\wedge}$. Since A is $\left(R_{0}\right)$, for any $f \in \mathfrak{m}, A_{f}=\left(A^{\nu}\right)_{f}$, thus $\left(A^{\wedge}\right)_{f}=\left(A^{\nu} \otimes_{A} A^{\wedge}\right)_{f}$, so A^{\wedge} is $\left(R_{0}\right)$ and $A^{\nu} \otimes_{A} A^{\wedge}=A^{\wedge \nu}$.

Condition 3.1.1 implies desired tame behavior, Proposition 3.1.4 below. Before that, some notations.

Notation 3.1.3. Let A be a Noetherian local ring of dimension 1 that satisfies Condition 3.1.1.

Let \mathfrak{p} be a minimal prime of $A .(A / \mathfrak{p})^{\nu}$ is finite over A by Lemma 3.1.2, thus a DVR. ${ }^{4}$ Denote by $v_{\mathfrak{p}}: A \rightarrow \mathbf{Z}_{\geq 0} \cup\{\infty\}$ the corresponding valuation composed with the map $A \rightarrow(A / \mathfrak{p})^{\nu}$; by Condition 3.1.1(iii), we see $v_{\mathfrak{p}}(a)=$ $l_{A}\left((A / \mathfrak{p})^{\nu} / a(A / \mathfrak{p})^{\nu}\right)$. Let $\beta(\mathfrak{p}) \in \mathbf{Z}_{\geq 0}$ be the minimal β such that there exists an element $s \in A$ in all minimal primes of A other than \mathfrak{p} and that $v_{\mathfrak{p}}(s)=\beta$.

Denote by $\mathfrak{c}_{\mathfrak{p}}$ the conductor of the extension $A / \mathfrak{p} \rightarrow(A / \mathfrak{p})^{\nu}$, i.e., $\mathfrak{c}_{\mathfrak{p}}=$ $\left\{a \in(A / \mathfrak{p})^{\nu} \mid a(A / \mathfrak{p})^{\nu} \subseteq A / \mathfrak{p}\right\}$. Note that $A / \mathfrak{p} \rightarrow(A / \mathfrak{p})^{\nu}$ is finite by Lemma 3.1.2, so $\mathfrak{c}_{\mathfrak{p}}$ is nonzero. Denote by $\gamma_{0}(\mathfrak{p})$ the number $l_{A}\left((A / \mathfrak{p})^{\nu} / \mathfrak{c}_{\mathfrak{p}}\right)$.

Assume now that A contains \mathbf{F}_{p}. We denote by $\gamma(\mathfrak{p})$ the minimal integer γ such that $\gamma \geq \gamma_{0}(\mathfrak{p})+\beta(\mathfrak{p})$ and that γ is not divisible by p.

Finally, let $\delta(A)=\sum_{\mathfrak{p}} \gamma(\mathfrak{p})$ and $\Delta(A)=\sum_{\mathfrak{p}}(\gamma(\mathfrak{p})+1)^{2}$, where the sum is over all minimal primes.

We now present the main result of this subsection. Our idea has some overlap with [Ska16].

Proposition 3.1.4. Let (A, \mathfrak{m}) be a Noetherian local ring of dimension 1 that satisfies Condition 3.1.1. Then the followings hold.
(i) Let \mathfrak{p} be a minimal prime of A, and let $n_{\mathfrak{p}} \in \mathbf{Z}, n_{\mathfrak{p}} \geq \gamma_{0}(\mathfrak{p})$. Then there exists an element $t_{\mathfrak{p}} \in A$ lying in all minimal primes other than \mathfrak{p}, such that $v_{\mathfrak{p}}\left(t_{\mathfrak{p}}\right)=n_{\mathfrak{p}}+\beta(\mathfrak{p})$.
(ii) Assume that A contains \mathbf{F}_{p}. Then there exists $t \in \mathfrak{m}$ such that for all minimal primes \mathfrak{p} of $A, v_{\mathfrak{p}}(t)=\gamma(\mathfrak{p})$.
(iii) Assume that A is complete and contains \mathbf{F}_{p}. For any t as in (ii), and any choice of a coefficient field $k \subseteq A$, the map $k[[T]] \rightarrow A$ mapping T to t is finite and generically étale of generic degree $n=\delta(A)$.

[^2](iv) For any $k[[T]] \rightarrow A$ as in (iii), there exist elements e_{1}, \ldots, e_{n} of A mapping to a basis of $A\left[\frac{1}{T}\right]$ over $k((T))$ such that the T-adic valuation of the discriminant $\operatorname{Disc}_{A / k[[T]]}\left(e_{1}, \ldots, e_{n}\right)$ is $\Delta(A)$.

Proof. By the definition of the conductor, we see that there exists $r_{\mathfrak{p}} \in A$ such that $v_{\mathfrak{p}}\left(r_{\mathfrak{p}}\right)=n_{\mathfrak{p}}$. Let $s_{\mathfrak{p}}$ be an element of A contained in all other minimal primes of A and satisfies $v_{\mathfrak{p}}\left(s_{\mathfrak{p}}\right)=\beta(\mathfrak{p})$. Then $t_{\mathfrak{p}}=s_{\mathfrak{p}} r_{\mathfrak{p}}$ satisfies $v_{\mathfrak{p}}(t)=n_{\mathfrak{p}}+\beta(\mathfrak{p})$, showing (i).

For $(i i)$, let $n_{\mathfrak{p}}=\gamma(\mathfrak{p})-\beta(\mathfrak{p})$ for each \mathfrak{p}, and let $t_{\mathfrak{p}}$ be as in (i). Then $t=\sum_{\mathfrak{p}} t_{\mathfrak{p}}$ works. Note that t must be in \mathfrak{m} since $\gamma(\mathfrak{p})>0$.

Now we prove (iii). Let $t \in \mathfrak{m}$ be such that for all minimal primes \mathfrak{p} of $A, v_{\mathfrak{p}}(t)=\gamma(\mathfrak{p})$. In particular, t is a parameter of A. Let $k \subseteq A$ be an arbitrary coefficient field, so the map $k[[T]] \rightarrow A$ mapping T to t is finite. Since $v_{\mathfrak{p}}(t)=\gamma(\mathfrak{p})$ is not divisible by p and since the residue field of $(A / \mathfrak{p})^{\nu}$ is k (Condition 3.1.1(iii)), we see that $k[[T]] \rightarrow(A / \mathfrak{p})^{\nu}$ is totally tamely ramified of index $\gamma(\mathfrak{p})$. In particular, $k[[T]] \rightarrow A / \mathfrak{p}$ is generically étale, thus so is $k[[T]] \rightarrow A$ since A is $\left(R_{0}\right)$. That $k[[T]] \rightarrow A$ has generic degree $\delta(A)$ is clear.

It remains to show $(i v)$. Let \mathfrak{p} be a minimal prime of A. Let s be an element of A contained in all other minimal primes of A and satisfies $v_{\mathfrak{p}}(s)=$ $\beta(\mathfrak{p})$. In $(A / \mathfrak{p})^{\nu}$ we can write $s^{\gamma(\mathfrak{p})}=t^{\beta(\mathfrak{p})} u$, where $u \in(A / \mathfrak{p})^{\nu \times}$. Then we can write $u=v w_{1}^{-1}$, with $v \in k^{\times}$and w_{1} has residue class 1 in the residue field of $(A / \mathfrak{p})^{\nu}$, since the residue field of $(A / \mathfrak{p})^{\nu}$ is k (Condition 3.1.1(iii)). Since p does not divide $\gamma(\mathfrak{p})$, by Hensel's Lemma $w_{1}=w^{\gamma(\mathfrak{p})}$ for some $w \in(A / \mathfrak{p})^{\nu}$ with residue class 1 . Then $(w s)^{\gamma(\mathfrak{p})}=t^{\beta(\mathfrak{p})} v$.

Let $y \in A$ be such that the image of y in A / \mathfrak{p} is in $\mathfrak{c}_{\mathfrak{p}}$ and that $v_{\mathfrak{p}}(y)=$ $n_{\mathfrak{p}}:=\gamma(\mathfrak{p})-\beta(\mathfrak{p})+1$. This is possible because $n_{\mathfrak{p}} \geq \gamma_{0}(\mathfrak{p})$. Then similarly we can write $\left(w^{\prime} y\right)^{\gamma(\mathfrak{p})}=t^{n_{\mathfrak{p}}} v^{\prime} \in(A / \mathfrak{p})^{\nu}$, where $v^{\prime} \in k^{\times}$and w^{\prime} has residue class 1. Now, since the image of y in A / \mathfrak{p} is in $\mathfrak{c}_{\mathfrak{p}}$, there exists $z \in A$ such that the $z=y w w^{\prime} \in A / \mathfrak{p}$. Finally, let $x_{\mathfrak{p}}$ be the element $s z$. Then $x_{\mathfrak{p}}$ is in all minimal ideals other than \mathfrak{p}, and $x_{\mathfrak{p}}^{\gamma(\mathfrak{p})}=t^{\gamma(\mathfrak{p})+1} v v^{\prime} \in(A / \mathfrak{p})^{\nu}$, where $v, v^{\prime} \in k^{\times}$.

We have that $v_{\mathfrak{p}}\left(x_{\mathfrak{p}}\right)=\gamma(\mathfrak{p})+1$ and $\gamma(\mathfrak{p})$ are relatively prime, so we see that $x_{\mathfrak{p}}, \ldots, x_{\mathfrak{p}}^{\gamma(\mathfrak{p})}$ is a basis of $\operatorname{Frac}(A / \mathfrak{p})$ over $k((T))$. Since $x_{\mathfrak{p}}$ is in all minimal primes other than \mathfrak{p}, we see that $\cup_{\mathfrak{p}}\left\{x_{\mathfrak{p}}, \ldots, x_{\mathfrak{p}}^{\gamma(\mathfrak{p})}\right\}$ is a basis of $A\left[\frac{1}{T}\right]$ over $k((T))$. It suffices to show the discriminant of this basis has T adic valuation $\Delta(A)$; thus it suffices to show the discriminant of the basis $x_{\mathfrak{p}}, \ldots, x_{\mathfrak{p}}^{\gamma(\mathfrak{p})}$ of $\operatorname{Frac}(A / \mathfrak{p})$ over $k((T))$ has T-adic valuation $(\gamma(\mathfrak{p})+1)^{2}$. Since $x_{\mathfrak{p}}^{\gamma(\mathfrak{p})}$ is the image of $T^{\gamma(\mathfrak{p})+1} v v^{\prime} \in k[[T]]$, this follows from Lemma 2.2.4.

We will need to move between a local ring and its completion.
Lemma 3.1.5. Let A be a Noetherian local ring of dimension 1. Assume that A satisfies Condition 3.1.1(i)(ii). Then the followings hold.
(i) The map $\mathfrak{p} \mapsto \mathfrak{p} A^{\wedge}$ is a bijection between the minimal primes of A and those of A^{\wedge}.
(ii) A satisfies Condition 3.1.1(iii) if and only if A^{\wedge} does.
(iii) If (ii) is the case, then the map in (i) identifies β, γ_{0} and γ. In particular, $\delta(A)=\delta\left(A^{\wedge}\right)$ and $\Delta(A)=\Delta\left(A^{\wedge}\right)$.

Proof. Let \mathfrak{p} be a minimal prime of A. By Lemma 3.1.2, $A / \mathfrak{p} \rightarrow(A / \mathfrak{p})^{\nu}$ is finite, so by Lemma 3.1.2 again we see that $(A / \mathfrak{p})^{\nu \wedge}=(A / \mathfrak{p})^{\wedge \nu}$ is normal. Condition $3.1 .1(i i)$ says that $(A / \mathfrak{p})^{\nu}$ is local, thus $(A / \mathfrak{p})^{\nu \wedge}$ is local, hence a DVR, and its subring $(A / \mathfrak{p})^{\wedge}$ is then an integral domain. So $\mathfrak{p} A^{\wedge}$ is a minimal prime of A^{\wedge}, showing (i), and $(A / \mathfrak{p})^{\nu \wedge}=\left(A^{\wedge} / \mathfrak{p} A^{\wedge}\right)^{\nu}$, showing (ii).

For (iii), by previous discussions $\left.v_{\mathfrak{p} A^{\wedge}}\right|_{A}=v_{\mathfrak{p}}$. Since taking conductor and finite intersection commute with flat base change, it is clear that $\gamma_{0}\left(\mathfrak{p} A^{\wedge}\right)=$ $\gamma_{0}(\mathfrak{p})$ and $\beta\left(\mathfrak{p} A^{\wedge}\right)=\beta(\mathfrak{p})$. Therefore $\gamma\left(\mathfrak{p} A^{\wedge}\right)=\gamma(\mathfrak{p})$.

3.2. Tame curves.

Definition 3.2.1. Let A be a Noetherian local ring, $d=\operatorname{dim} A$. We say a proper ideal \mathfrak{a} of A defines a tame curve if
(i) all minimal primes of \mathfrak{a} have height $d-1$; and
(ii) A / \mathfrak{a} satisfies Condition 3.1.1.

Lemma 3.2.2. Let A be a Noetherian local ring, a a proper ideal of A. If \mathfrak{a} defines a tame curve, so does $\mathfrak{a} A^{\wedge} \subseteq A^{\wedge}$.

Proof. Since $A \rightarrow A^{\wedge}$ is flat, every minimal prime of $\mathfrak{a} A^{\wedge}$ has the same height as some minimal prime of \mathfrak{a}. This takes care of (i) in Definition 3.2.1. For (ii), Condition 3.1.1(i) for A / \mathfrak{a} and $A^{\wedge} / \mathfrak{a} A^{\wedge}$ are the same, $(i i)$ is automatic for the complete local ring $A^{\wedge} / \mathfrak{a} A^{\wedge}$, and $A^{\wedge} / \mathfrak{a} A^{\wedge}$ satisfies (iii) by Lemma 3.1.5.

Theorem 3.2.3. Let (A, \mathfrak{m}) be a Noetherian local \mathbf{F}_{p}-algebra, $d=\operatorname{dim} A$. Assume that there exist elements a_{1}, \ldots, a_{d-1} such that $\mathfrak{a}=\left(a_{1}, \ldots, a_{d-1}\right)$ defines a tame curve.

Then there exists $t \in \mathfrak{m}$ such that for any coefficient field k of A^{\wedge}, the $\operatorname{map} P:=k\left[\left[X_{1}, \ldots, X_{d-1}, T\right]\right] \rightarrow A^{\wedge}$ mapping X_{i} to a_{i} and T to t is finite of generic degree $n=\delta(A / \mathfrak{a})$, and is étale at the prime $\mathfrak{P}=\left(X_{1}, \ldots, X_{d-1}\right)$, and there exists a basis e_{1}, \ldots, e_{n} of $A^{\wedge} \otimes_{P} \operatorname{Frac}(P)$ over $\operatorname{Frac}(P)$ such that

$$
\operatorname{Disc}_{A^{\wedge} / P}\left(e_{1}, \ldots, e_{n}\right) \notin \mathfrak{P}+T^{\Delta(A / \mathfrak{a})+1} P
$$

See Notation 3.1.3 for $\delta(-)$ and $\Delta(-)$ in the statement.
Proof. The completion of A satisfies the same assumptions by Lemmas 3.2.2 and 3.1.5. We will show that if A is complete, and $t \in A$ is such that the image of t in A / \mathfrak{a} is as in Proposition 3.1.4(ii), then t works. This proves the theorem, since the set of t indicated in Proposition 3.1.4(ii) is open in the adic topology.

Assume A and t are as above. Let k be an arbitrary coefficient field and let $P \rightarrow A$ and \mathfrak{P} be as in the statement of our theorem. Note that $P \rightarrow A$
is finite and $\mathfrak{a}=\mathfrak{P} A$. Since every minimal prime of \mathfrak{a} has height $d-1$, every maximal ideal of $A_{\mathfrak{P}}$ has height $d-1$. Since $P_{\mathfrak{F}} / \mathfrak{P} P_{\mathfrak{F}} \rightarrow A_{\mathfrak{P}} / \mathfrak{P} A_{\mathfrak{P}}$ is finite étale of degree $n=\delta(A / \mathfrak{a})$ (Proposition 3.1.4(iii)), and since $P_{\mathfrak{F}}$ is normal of dimension $d-1, P_{\mathfrak{F}} \rightarrow A_{\mathfrak{F}}$ is finite étale of degree n, see for example [Stacks, Tag 0GSC].

Find n elements of $A / \mathfrak{a}=A / \mathfrak{P} A$ as in Proposition 3.1.4(iv) and lift them to elements $e_{1}, \ldots, e_{n} \in A$. Then e_{1}, \ldots, e_{n} is a basis of $A_{\mathfrak{F}}$ over $P_{\mathfrak{P}}$, and Lemma 2.2.3 gives $\operatorname{Disc}_{A / P}\left(e_{1}, \ldots, e_{n}\right) \notin \mathfrak{P}+T^{\Delta(A / \mathfrak{a})+1} P$, as desired.
3.3. Finding tame curves. The goal of this subsection is to show that tame curves in the spectrum of a local ring can be found after a reasonable extension (Proposition 3.3.2).

Lemma 3.3.1. Let R be a Noetherian local \mathbf{F}_{p}-algebra of dimension 1. Assume that R^{\wedge} is $\left(R_{0}\right)$, and assume that R / \mathfrak{p} is geometrically unibranch for all minimal primes \mathfrak{p} of R. Then the followings hold.
(i) There exist a subset Λ of R and a parameter $t \in R$ that satisfies the conclusions of Theorem 2.3.1.
(ii) For Λ, t as in (i), put $\kappa_{0}=\mathbf{F}_{p}(\Lambda)$. Then there exists a finite purely inseparable extension $\kappa^{\prime} / \kappa_{0}$ such that $R \otimes_{\kappa_{0}} \kappa^{\prime}$ satisfies Condition 3.1.1.

Proof. For (i), we need to verify the conditions of Theorem 2.3.1. Since R is one-dimensional, $A=\left(R^{\wedge}\right)_{\text {red }}$ is equidimensional. Since R / \mathfrak{p} is (geometrically) unibrach for each minimal prime \mathfrak{p} of R and since R^{\wedge} is $\left(R_{0}\right), R$ satisfies Condition 3.1.1 $(i)(i i)$, so by Lemma 3.1.5, $\mathfrak{p} \mapsto \mathfrak{p} A$ is a bijection between the minimal primes of R and A. Thus the conditions of Theorem 2.3.1 are satisfied.

Now fix Λ and t as in (i) and let $\kappa_{0}=\mathbf{F}_{p}(\Lambda)$. Let κ be the unique coefficient field of R^{\wedge} containing κ_{0}, so A is finite and generically étale over $\kappa[[t]]$, see Theorem 2.3.1. Since R^{\wedge} is $\left(R_{0}\right)$, we see R^{\wedge} is finite and generically étale over $\kappa[[t]]$ as well.

We fix a perfect closure $\kappa_{0}^{\text {perf }}$ and denote by $\kappa_{1}, \kappa_{2}, \ldots$ the finite purely inseparable extensions of κ_{0} inside $\kappa_{0}^{\text {perf }}$. For a κ_{1}, denote by R_{1} the ring $R \otimes_{\kappa_{0}} \kappa_{1}$, so R_{1} is a Noetherian local ring with residue field $k \otimes_{\kappa_{0}} \kappa_{1}$ where k is the residue field of R. Let \tilde{R} be the local ring $R \otimes_{\kappa_{0}} \kappa_{0}^{\text {perf }}$, and let R^{*} be the
 so we have canonical maps $R_{1} \rightarrow \tilde{R} \rightarrow R^{*}$. Note that R^{*} is finite and generically étale over $\kappa^{\text {perf }}[[t]]$, hence is complete, Noetherian, and $\left(R_{0}\right)$. The map $R_{1} \rightarrow R^{*}$ is faithfully flat, and \tilde{R} is the union of all such rings R_{1}, so $\mathfrak{a}=\mathfrak{a} R^{*} \cap \tilde{R}$ for every ideal \mathfrak{a} of \tilde{R}. Thus \tilde{R} is Noetherian, and it is clear that $\tilde{R}^{\wedge}=R^{*}$. By Lemma 3.1.2, the normalization of \tilde{R} is finite, so we can find a κ_{1} such that $R_{1}^{\nu} \otimes_{\kappa_{1}} \kappa_{0}^{\text {perf }}=\tilde{R}^{\nu}$, hence for all κ_{2} / κ_{1}, we have $R_{1}^{\nu} \otimes_{\kappa_{1}} \kappa_{2}=R_{2}^{\nu}$.

For a κ_{2} / κ_{1}, consider the quantity $\lambda\left(\kappa_{2}\right)=l_{R_{2}^{\nu}}\left(R_{2}^{\nu} / t R_{2}^{\nu}\right)$. Then $\lambda\left(\kappa_{2}\right) \leq$ $l_{R_{2}}\left(R_{2}^{\nu} / t R_{2}^{\nu}\right)$, and since $R_{1}^{\nu} \otimes_{\kappa_{1}} \kappa_{2}=R_{2}^{\nu}$, this latter quantity is equal to $l_{R_{1}}\left(R_{1}^{\nu} / t R_{1}^{\nu}\right)$. Thus the quantities $\lambda\left(\kappa_{2}\right)$ are bounded, so we may take a κ_{2} / κ_{1} that achives the maximal $\lambda\left(\kappa_{2}\right)$. We claim that κ_{2} / κ_{0} is what we want. Condition 3.1.1 (i) is clear since $R_{2} \rightarrow R^{*}$ is faithfully flat; we need the rest two items.

Note that $R \rightarrow R_{2}$ is finite and radicial, so for each minimal prime \mathfrak{p}_{2} of $R_{2}, \mathfrak{p}_{2} \cap R$ is a minimal prime R and we have $\left(R / \mathfrak{p}_{2} \cap R\right)^{s h} \otimes_{R / \mathfrak{p}_{2} \cap R} R_{2} / \mathfrak{p}_{2}=$ $\left(R_{2} / \mathfrak{p}_{2}\right)^{\text {sh }}$. Since $R / \mathfrak{p}_{2} \cap R$ is geometrically unibranch, R_{2} / \mathfrak{p}_{2} is geometrically unibranch, see [Stacks, Tag 06DM]. In particular, Condition 3.1.1(ii) holds for R_{2}.

Now we show Condition 3.1.1(iii) holds for R_{2}. Let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{c}$ be the maximal ideals of R_{2}^{ν}. For every κ_{3} / κ_{2}, since $R_{2}^{\nu} \otimes_{\kappa_{2}} \kappa_{3}=R_{3}^{\nu}, \mathfrak{n}_{i}=\sqrt{\mathfrak{m}_{i} R_{3}^{\nu}}$ are exactly the maximal ideals of R_{3}^{ν}, and $\left(R_{2}^{\nu}\right)_{\mathfrak{m}_{i}} \otimes_{\kappa_{2}} \kappa_{3}=\left(R_{3}^{\nu}\right)_{\mathfrak{n}_{i}}$. Thus we see

$$
\begin{aligned}
l_{R_{3}^{\nu}}\left(R_{3}^{\nu} / t R_{3}^{\nu}\right) & =\sum_{i} l_{R_{3}^{\nu}}\left(\left(R_{3}^{\nu}\right)_{\mathfrak{n}_{i}} / t\left(R_{3}^{\nu}\right)_{\mathfrak{n}_{i}}\right) \\
& =\sum_{i} \frac{1}{\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa\left(\mathfrak{m}_{i}\right)\right]} l_{R_{2}^{\nu}}\left(\left(R_{3}^{\nu}\right)_{\mathfrak{n}_{i}} / t\left(R_{3}^{\nu}\right)_{\mathfrak{n}_{i}}\right) \\
& =\sum_{i} \frac{\left[\kappa_{3}: \kappa_{2}\right]}{\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa\left(\mathfrak{m}_{i}\right)\right]} l_{R_{2}^{\nu}}\left(\left(R_{2}^{\nu}\right)_{\mathfrak{m}_{i}} / t\left(R_{2}^{\nu}\right)_{\mathfrak{m}_{i}}\right)
\end{aligned}
$$

and we always have

$$
l_{R_{2}^{\nu}}\left(R_{2}^{\nu} / t R_{2}^{\nu}\right)=\sum_{i} l_{R_{2}^{\nu}}\left(\left(R_{2}^{\nu}\right)_{\mathfrak{m}_{i}} / t\left(R_{2}^{\nu}\right)_{\mathfrak{m}_{i}}\right) .
$$

For each i we have $\left[\kappa_{3}: \kappa_{2}\right] \geq\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa\left(\mathfrak{m}_{i}\right)\right]$ since $\kappa\left(\mathfrak{n}_{i}\right)$ is a quotient of $\kappa\left(\mathfrak{m}_{i}\right) \otimes_{\kappa_{2}} \kappa_{3}$. Thus the maximality of $\lambda\left(\kappa_{2}\right)$ gives $\left[\kappa_{3}: \kappa_{2}\right]=\left[\kappa\left(\mathfrak{n}_{i}\right): \kappa\left(\mathfrak{m}_{i}\right)\right]$ and thus $\kappa\left(\mathfrak{n}_{i}\right)=\kappa\left(\mathfrak{m}_{i}\right) \otimes_{\kappa_{2}} \kappa_{3}$. Since κ_{3} / κ_{2} was arbitrary, we must have $\kappa\left(\mathfrak{m}_{i}\right)$ separable over κ_{2} for all i. Since R_{2} / \mathfrak{p}_{2} is geometrically unibranch for every minimal prime \mathfrak{p}_{2} of R_{2}, we see $\kappa\left(\mathfrak{m}_{i}\right)$ is purely inseparable over κ_{2}, so $\kappa\left(\mathfrak{m}_{i}\right)=\kappa_{2}$, which is Condition 3.1.1(iii), as desired.

Proposition 3.3.2. Let (A, \mathfrak{m}, k) be a Noetherian local \mathbf{F}_{p}-algebra of dimension d. Let \mathfrak{a} be a proper ideal of A. Assume that all minimal primes of \mathfrak{a} has height $d-1$ and that $(A / \mathfrak{a})^{\wedge}$ is $\left(R_{0}\right)$.

Then there exist a syntomic-local ring map $A \rightarrow B^{5}$ such that $B / \mathfrak{m} B$ is finite over k and that $\mathfrak{a} B$ defines a tame curve.

Proof. Any étale-local ring map $A / \mathfrak{a} \rightarrow E$ is syntomic-local by [Stacks, Tag ØOUE], and E^{\wedge} is $\left(R_{0}\right)$ since it is étale over $(A / \mathfrak{a})^{\wedge}$. Take an E such that E / \mathfrak{p} is geometrically unibranch for all minimal primes \mathfrak{p} of E, cf. [Stacks, Tag 0CB4]. By Lemma 3.3.1, there exists a finite syntomic E-algebra C that

[^3]is local and satisfies Condition 3.1.1. Note that $A / \mathfrak{a} \rightarrow C$ is also syntomiclocal, and $C / \mathfrak{m} C$ is finite over k.

By [Stacks, Tag 07 M 8], we can lift C to a syntomic-local A-algebra B. By our choice, $B / \mathfrak{a} B=C$ satisfies Definition 3.2.1(ii), and $B / \mathfrak{m} B=C / \mathfrak{m} C$ is finite over k. By flatness, $\operatorname{dim} B=d$ and all minimal primes of $\mathfrak{a} B$ have height $d-1$, giving Definition 3.2.1(i).
3.4. Local uniformity. The goal of this subsection is to prove the following statement.

Theorem 3.4.1. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R), d=h t \mathfrak{p}$.
Let $\mathfrak{a} \subseteq \mathfrak{p}$ be an ideal of R such that $\mathfrak{a} R_{\mathfrak{p}}$ that defines a tame curve (Definition 3.2.1). Then, upon replacing R by R_{g} for some $g \notin \mathfrak{p}$, the followings hold.
(i) For all $\mathfrak{P} \in V(\mathfrak{p})$, $\operatorname{ht}(\mathfrak{P})=d+\operatorname{ht}(\mathfrak{P} / \mathfrak{p})$.
(ii) For all $\mathfrak{P} \in V(\mathfrak{p})$ such that $R_{\mathfrak{P}} / \mathfrak{p} R_{\mathfrak{P}}$ is regular, and all sequence of elements $\pi_{1}, \ldots, \pi_{\delta} \in R_{\mathfrak{P}}$ that maps to a regular system of parameters of $R_{\mathfrak{P}} / \mathfrak{p} R_{\mathfrak{P}}, \mathfrak{A}:=\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})$ defines a tame curve.
(iii) Notations as in (ii) and Notation 3.1.3. If R / \mathfrak{a} contains \mathbf{F}_{p}, then for $\mathfrak{P}, \underline{\pi}$ as in (ii), we have $\delta\left(R_{\mathfrak{P}} / \mathfrak{A}\right)=\delta\left(R_{\mathfrak{p}} / \mathfrak{a}\right)$ and $\Delta\left(R_{\mathfrak{P}} / \mathfrak{A}\right)=$ $\Delta\left(R_{\mathfrak{p}} / \mathfrak{a}\right)$.
Item (i) follows from [EGA IV ${ }_{2}$, Proposition 6.10.6]. Before going into the proof of (ii) and (iii), we note the following.

Discussion 3.4.2 (cf. [EY11, Lemmas 3.2 and 3.3]). Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$. Let M be a finite R-module. Then, upon replacing R by R_{g} for some $g \notin \mathfrak{p}$, there is a filtration $M=M_{n} \supsetneq M_{n-1} \supsetneq \ldots \supsetneq M_{1} \supsetneq$ $M_{0}=0$ such that $M_{j} / M_{j-1} \cong R / \mathfrak{p}_{j}$ where $\mathfrak{p}_{j} \subseteq \mathfrak{p}$. In particular, if $M_{\mathfrak{p}}$ is of finite length, then M is a successive extension of R / \mathfrak{p}. Thus if $\mathfrak{P} \in V(\mathfrak{p})$, π_{1}, \ldots, π_{h} elements of $R_{\mathfrak{F}}$ that are a regular sequence in $R_{\mathfrak{P}} / \mathfrak{p} R_{\mathfrak{F}}$, then π_{1}, \ldots, π_{h} is a regular sequence in $M_{\mathfrak{P}}$. Consequently, if

$$
0 \longrightarrow M_{1} \longrightarrow M_{2} \longrightarrow M \longrightarrow 0
$$

is a short exact sequence of R-modules, then

$$
0 \longrightarrow\left(M_{1}\right)_{\mathfrak{F}} /(\underline{\pi}) \longrightarrow\left(M_{2}\right)_{\mathfrak{F}} /(\underline{\pi}) \longrightarrow M_{\mathfrak{F}} /(\underline{\pi}) \longrightarrow 0
$$

is exact. Moreover, if $h=\operatorname{dim} R_{\mathfrak{P}} / \mathfrak{p} R_{\mathfrak{P}}$ (so in particular $R_{\mathfrak{F}} / \mathfrak{p} R_{\mathfrak{P}}$ is CohenMacaulay), then looking at the prime filtration we see $l\left(M_{\mathfrak{P}} /(\underline{\pi})\right)=l\left(M_{\mathfrak{p}}\right) l\left(R_{\mathfrak{P}} /\left(\mathfrak{p} R_{\mathfrak{P}}+\right.\right.$ ($\underline{\pi})$)).

Now we continue the proof of Theorem 3.4.1.
Step 1. Let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}$ be the minimal primes of \mathfrak{a}. Localize R, we may assume $\mathfrak{q}_{i} \subseteq \mathfrak{p}$ for all i.

Step 2. For each i, the normalization of $R_{\mathfrak{p}} / \mathfrak{q}_{i} R_{\mathfrak{p}}$ is finite (Lemma 3.1.2). Thus there exists a finite extension R_{i}^{\prime} of R / \mathfrak{q}_{i} in its fraction field such that $\left(R_{i}^{\prime}\right)_{\mathfrak{p}}=\left(R_{\mathfrak{p}} / \mathfrak{q}_{i} R_{\mathfrak{p}}\right)^{\nu}$.

Step 3. By Condition 3.1.1 $(i i),\left(R_{i}^{\prime}\right)_{\mathfrak{p}}$ is local, so R_{i}^{\prime} has exactly one prime $\mathfrak{p}_{i}^{\prime}$ above \mathfrak{p}. Localizing R we may assume $\mathfrak{p}_{i}^{\prime}=\sqrt{\mathfrak{p} R_{i}^{\prime}}$. By Condition 3.1.1 $(i i i)$, $\left(R_{i}^{\prime}\right)_{\mathfrak{p}} / \mathfrak{p}_{i}^{\prime}\left(R_{i}^{\prime}\right)_{\mathfrak{p}}=\kappa(\mathfrak{p})$, so after localizing R we may assume $R / \mathfrak{p}=R_{i}^{\prime} / \mathfrak{p}_{i}^{\prime}$. In particular, for each $\mathfrak{P} \in V(\mathfrak{p})$, there is a unique prime $\mathfrak{P}_{i}^{\prime}$ of R_{i}^{\prime} above \mathfrak{P}, and $R_{\mathfrak{P}} / \mathfrak{p} R_{\mathfrak{P}}=\left(R_{i}^{\prime}\right)_{\mathfrak{P}_{i}^{\prime}} / \mathfrak{p}_{i}^{\prime}\left(R_{i}^{\prime}\right)_{\mathfrak{P}_{i}^{\prime}}$, in particular $\kappa\left(\mathfrak{P}_{i}^{\prime}\right)=\kappa(\mathfrak{P})$.
Step 4. Since $\left(R_{i}^{\prime}\right)_{\mathfrak{p}}$ is a DVR, after localizing R we may assume that $\mathfrak{p}_{i}^{\prime}$ is a principal ideal. Let τ_{i} be a generator, so $R / \mathfrak{p}=R_{i}^{\prime} / \tau_{i} R_{i}^{\prime}$. For $\mathfrak{P}, \underline{\pi}$ as in (ii), $\tau_{i}, \underline{\pi}$ is then a regular sequence in $\left(R_{i}^{\prime}\right)_{\mathfrak{P}_{i}^{\prime}}=\left(R_{i}^{\prime}\right)_{\mathfrak{P}}$ that generates the maximal ideal. Thus $\left(R_{i}^{\prime}\right)_{\mathfrak{P}}$ is regular and $\tau_{i}, \underline{\pi}$ is a regular system of parameters. In particular, $\underline{\pi}$ is a regular sequence in $\left(R_{i}^{\prime}\right)_{\mathfrak{P}}$ and $\left(R_{i}^{\prime}\right)_{\mathfrak{P}} /(\underline{\pi})$ is a DVR.
Step 5. Apply Discussion 3.4 .2 to $M=\frac{R_{i}^{\prime}}{R / \mathfrak{q}_{i}}$, we see that after localizing R, we may assume that for all $\mathfrak{P}, \underline{\pi}, R_{\mathfrak{P}} /\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right) \rightarrow\left(R_{i}^{\prime}\right)_{\mathfrak{P}} /(\underline{\pi})$ is injective with finite length cokernel. Since $\left(R_{i}^{\prime}\right)_{\mathfrak{P}} /(\underline{\pi})$ is a DVR (Step 4), it is the normalization of the integral domain $R_{\mathfrak{P}} /\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right)$. In particular, $\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+\right.$ $(\underline{\pi}))$ is a prime ideal, and $\operatorname{dim} R_{\mathfrak{P}} /\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right)=1$.
Step 6. Apply Discussion 3.4.2 to $M=R /\left(\mathfrak{q}_{i}+\mathfrak{q}_{j}\right)(i \neq j)$, we see that after localizing R, we may assume that for all $\mathfrak{P}, \underline{\pi}, R_{\mathfrak{P}} /\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+\mathfrak{q}_{j} R_{\mathfrak{P}}+(\underline{\pi})\right)$ has finite length. Thus $\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi}) \neq \mathfrak{q}_{j} R_{\mathfrak{P}}+(\underline{\pi})$.
Step 7. Apply Discussion 3.4.2 to $M=\frac{\oplus_{i} R / \mathfrak{q}_{i}}{R / \sqrt{\mathfrak{a}}}$, we see that after localizing R, we may assume that for all $\mathfrak{P}, \underline{\pi}, \cap_{i}\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right)=\sqrt{\mathfrak{a}} R_{\mathfrak{P}}+(\underline{\pi})$. Thus $\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})$ are precisely all the minimal primes of $\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})$.
Step 8. Apply Discussion 3.4 .2 to $M=\sqrt{\mathfrak{a}} / \mathfrak{a}$, we see that after localizing R, we may assume that for all $\mathfrak{P}, \underline{\pi}, \frac{\sqrt{\mathfrak{a}} R_{\mathfrak{P}}+(\underline{\pi})}{\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})}$ has finite length. Thus $R_{\mathfrak{P}} /\left(\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})\right)$ is $\left(R_{0}\right)$.

At this point, with the characterization of minimal primes and normalizations in the previous steps, and with Lemma 3.1.2, we conclude that for all $\mathfrak{P}, \underline{\pi}$, the ring $R_{\mathfrak{P}} /\left(\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})\right)$ has dimension 1 and satisfies Condition 3.1.1. To see $\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})$ defines a tame curve, we must show $h t\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right)=$ $\operatorname{ht}(\mathfrak{P})-1$ for all i.

By what we have done in Steps 4 and $5, \underline{\pi}$ is a regular sequence in both $\left(R_{i}^{\prime}\right)_{\mathfrak{P}}$ and $\left(\frac{R_{i}^{\prime}}{R / \mathfrak{q}_{i}}\right)_{\mathfrak{P}}$. Thus $\underline{\pi}$ is a regular sequence in $R_{\mathfrak{P}} / \mathfrak{q}_{i} R_{\mathfrak{P}}$. Therefore $\operatorname{ht}\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right) \geq \operatorname{ht}\left(\mathfrak{q}_{i} R_{\mathfrak{P}}\right)+h$, where $h=\operatorname{ht}(\mathfrak{P} / \mathfrak{p})$. Since $\operatorname{ht}\left(\mathfrak{q}_{i} R_{\mathfrak{P}}\right)=$ $\operatorname{ht}\left(\mathfrak{q}_{i} R_{\mathfrak{p}}\right)=d-1($ Definition 3.2.1 $(i))$, we see $\operatorname{ht}\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right) \geq d+h-1$. Since $\operatorname{ht}(\mathfrak{P})=d+h($ by $(i))$, we see that $\operatorname{ht}\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right)=d+h-1$, thus $\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})$ defines a tame curve.

It remains to show the agreement of δ and Δ, assuming R / \mathfrak{a} contains \mathbf{F}_{p}. By definition (Notation 3.1.3), it suffices to show, for each i, that $\beta\left(\overline{\mathfrak{q}}_{i}\right)=$ $\beta\left(\mathfrak{q}_{i} R_{\mathfrak{p}} / \mathfrak{a} R_{\mathfrak{p}}\right)$ and same for γ_{0}. Here $\overline{\mathfrak{q}}_{i}$ denotes $\frac{\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})}{\mathfrak{a} R_{\mathfrak{P}}+(\underline{\pi})}$.
Step 9. Fix an index i. Let $\mathfrak{r}_{i}=\cap_{j \neq i} \mathfrak{q}_{j}$, so $\beta\left(\mathfrak{q}_{i} R_{\mathfrak{p}} / \mathfrak{a} R_{\mathfrak{p}}\right)=l_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)$, where M is the finite R-module $R_{i}^{\prime} / \mathfrak{r}_{i} R_{i}^{\prime} .\left(R_{\mathfrak{p}} / \mathfrak{a} R_{\mathfrak{p}}\right.$ satisfies Condition 3.1.1(iii) so
we can calculate the length over $R_{\mathfrak{p}}$.) As in Step 7, after localizing R we may assume for all $\mathfrak{P}, \underline{\pi}, \mathfrak{r}_{i} R_{\mathfrak{F}}+(\underline{\pi})=\cap_{j \neq i}\left(\mathfrak{q}_{j} R_{\mathfrak{P}}+(\underline{\pi})\right)$. Thus $\beta\left(\overline{\mathfrak{q}}_{i}\right)=$ $l\left(M_{\mathfrak{P}} /(\underline{\pi}) M_{\mathfrak{P}}\right)$. Apply Discussion 3.4.2, we see $\beta\left(\overline{\mathfrak{q}}_{i}\right)=\beta\left(\mathfrak{q}_{i} R_{\mathfrak{p}} / \mathfrak{a} R_{\mathfrak{p}}\right)$ after localizing R again.

Step 10. Again, fix an index i. Let $\mathfrak{c}_{i}=\left\{a \in R \mid a R_{i}^{\prime} \subseteq R / \mathfrak{q}_{i}\right\}$, the conductor of R_{i}^{\prime} over R / \mathfrak{q}_{i} computed in R, and let $M=\frac{R_{i}^{\prime}}{R / \mathfrak{q}_{i}}$. If x_{1}, \ldots, x_{l} generate M as an R-module, then we have an injection

$$
\begin{aligned}
R / \mathfrak{c}_{i} & \rightarrow M^{\oplus l} \\
a & \mapsto\left(a x_{1}, \ldots, a x_{l}\right)
\end{aligned}
$$

The cokernel of this map has finite length at \mathfrak{p} since M does. Apply Discussion 3.4.2, we see that after localizing $R, \mathfrak{c}_{i} R_{\mathfrak{F}}+(\underline{\pi})$ is the conductor of the normalization over $R_{\mathfrak{F}} /\left(\mathfrak{q}_{i} R_{\mathfrak{P}}+(\underline{\pi})\right)$ computed in $R_{\mathfrak{P}}$. We have $\gamma\left(\mathfrak{q}_{i} R_{\mathfrak{p}} / \mathfrak{a} R_{\mathfrak{p}}\right)=l_{R_{\mathfrak{p}}}\left(\left(R_{i}^{\prime} / \mathfrak{c}_{i} R_{i}^{\prime}\right)_{\mathfrak{p}}\right)$ and similar for $\gamma\left(\overline{\mathfrak{q}}_{i}\right)$. Thus applying Discussion 3.4.2 again, we see that after localizing R again, $\gamma\left(\mathfrak{q}_{i} R_{\mathfrak{p}} / \mathfrak{a} R_{\mathfrak{p}}\right)=\gamma\left(\overline{\mathfrak{q}}_{i}\right)$.

The proof of Theorem 3.4.1 is now finished.
We arrive at the main theorem of the section.
Theorem 3.4.3. Let R be a Noetherian \mathbf{F}_{p}-algebra. Assume the followings hold.
(1) R is $J-2$.
(2) For all primes $\mathfrak{p}^{\prime} \subset \mathfrak{p}$ of R with $\operatorname{ht}\left(\mathfrak{p} / \mathfrak{p}^{\prime}\right)=1, R_{\mathfrak{p}}^{\wedge} / \mathfrak{p}^{\prime} R_{\mathfrak{p}}^{\wedge}$ is $\left(R_{0}\right)$.
(3) R is $\left(R_{0}\right)$.

Then there exist constants $\delta, \mu, \Delta \in \mathbf{Z}_{\geq 0}$ depending only on R, and a quasifinite syntomic ring map $R \rightarrow S$, such that for all $\mathfrak{p} \in \operatorname{Spec}(R)$, there exist $a \mathfrak{q} \in \operatorname{Spec}(S)$ above \mathfrak{p} and a ring map $P \rightarrow S_{\mathfrak{q}}^{\wedge}$ that satisfy the followings.
(i) $\left(P, \mathfrak{m}_{P}\right)$ is a formal power series ring over a field.
(ii) $P / \mathfrak{m}_{P}=\kappa(\mathfrak{q})$.
(iii) $P \rightarrow S_{\mathfrak{q}}^{\wedge}$ is finite and generically étale of generic degree $\leq \delta$.
(iv) $\mathfrak{q} S_{\mathfrak{q}}^{\wedge} / \mathfrak{m}_{P} S_{\mathfrak{q}}^{\wedge}$ is generated by at most μ elements.
(v) There exist $e_{1}, \ldots, e_{n} \in S_{\mathfrak{q}}^{\wedge}$ that map to a basis of $S_{\mathfrak{q}}^{\wedge} \otimes_{P} \operatorname{Frac}(P)$, such that $\operatorname{Disc}_{S_{\mathfrak{q}} / P}\left(e_{1}, \ldots, e_{n}\right) \notin \mathfrak{m}_{P}^{\Delta+1}$.
Proof. Let $\mathfrak{p} \in \operatorname{Spec}(R), d=\operatorname{ht}(\mathfrak{p})$. We shall find constants $\delta_{\mathfrak{p}}, \mu_{\mathfrak{p}}, \Delta_{\mathfrak{p}}$, a syntomic ring map $R \rightarrow S(\mathfrak{p})$, and a constructible subset $\mathcal{C}(\mathfrak{p}) \subseteq \operatorname{Spec}(R)$ containing \mathfrak{p} such that for all $\mathfrak{P} \in \mathcal{C}(\mathfrak{p})$, there exists $\mathfrak{Q} \in \operatorname{Spec}(S(\mathfrak{p}))$ above \mathfrak{P} and a ring map $P \rightarrow S(\mathfrak{p}) \hat{\mathfrak{Q}}$ that satisfy $(i)-(v)$. If this is possible, then we win since the constructible topology is compact [Stacks, Tag 0901] and we can take a finite product of $S(\mathfrak{p})$'s with the corresponding $\mathcal{C}(\mathfrak{p})$'s covering $\operatorname{Spec}(R)$.

By assumptions, $R_{\mathfrak{p}}$ is J-2 and $\left(R_{0}\right)$. If $d=0$, then there is some $f \notin \mathfrak{p}$ such that R_{f} is regular, so we can just take $\mathcal{C}(\mathfrak{p})=D(f), S(\mathfrak{p})=R_{f}, \delta_{\mathfrak{p}}=1$, $\mu_{\mathfrak{p}}=\Delta_{\mathfrak{p}}=0$.

Assume $d \geq 1$. By Lemma 2.1.2, there exist elements $a_{1}, \ldots, a_{d-1} \in \mathfrak{p} R_{\mathfrak{p}}$ such that all minimal primes of (\underline{a}) are of height $d-1$ and that $R_{\mathfrak{p}} /(\underline{a})$ is $\left(R_{0}\right)$. Note that then $\left(R_{\mathfrak{p}} /(\underline{a})\right)^{\wedge}$ is $\left(R_{0}\right)$ by assumption (2).

Let $R_{\mathfrak{p}} \rightarrow B$ be as in Proposition 3.3.2 for the ideal $\mathfrak{a}=(\underline{a}) . \quad B$ is a localization of a syntomic $R_{\mathfrak{p}}$-algebra, and $B / \mathfrak{p} B$ is finite over $\kappa(\mathfrak{p})$, thus $B=S_{\mathfrak{q}}$ for some quasi-finite syntomic R-algebra S and some $\mathfrak{q} \in \operatorname{Spec}(S)$. We also have $\mathfrak{a} B=\mathfrak{b}_{0} B$ for some ideal \mathfrak{b}_{0} of S generated by $d-1$ elements.

Since R is J-2, we can localize S near \mathfrak{q} to assume S / \mathfrak{q} regular. Let $\delta_{\mathfrak{p}}=\delta\left(B / \mathfrak{b}_{0} B\right), \Delta_{\mathfrak{p}}=\Delta\left(B / \mathfrak{b}_{0} B\right)$ (Notation 3.1.3), and let $\mu_{\mathfrak{p}}$ be the number of generators of $\mathfrak{q} / \mathfrak{b}_{0}$. Find $g \notin \mathfrak{q}$ as in Theorem 3.4.1 (for $R=S, \mathfrak{a}=\mathfrak{b}_{0}$, and $\mathfrak{p}=\mathfrak{q}$), and let $S(\mathfrak{p})=S_{g}$. Then for all $\mathfrak{Q} \in V(\mathfrak{q} S(\mathfrak{p}))$, there exists an ideal \mathfrak{B} of $S(\mathfrak{p})_{\mathfrak{Q}}$ generated by $\operatorname{ht}(\mathfrak{Q})-1$ elements defining a tame curve (Theorem 3.4.1(i)(ii)) and satisfying $\delta\left(S(\mathfrak{p})_{\mathfrak{Q}} / \mathfrak{B}\right)=\delta_{\mathfrak{p}}$ and $\Delta\left(S(\mathfrak{p})_{\mathfrak{Q}} / \mathfrak{B}\right)=$ $\Delta_{\mathfrak{p}}$ (Theorem 3.4.1(iii)). The form of \mathfrak{B} as in Theorem 3.4.1(ii) tells us that $\mathfrak{Q} / \mathfrak{B}$ is generated by at most $\mu_{\mathfrak{p}}$ elements.

Let $P \rightarrow S(\mathfrak{p}) \hat{\mathfrak{Q}}$ be a map as in Theorem 3.2.3, so (ii) is true by construction and $(i)(i i i)(v)$ follow from the theorem. By construction, $\mathfrak{B} S(\mathfrak{p}) \hat{\mathfrak{\Omega}} \subseteq$ $\mathfrak{m}_{P} S(\mathfrak{p}) \hat{\mathfrak{Q}}$, so we get $(i v)$. Finally, we let $\mathcal{C}(\mathfrak{p})$ be the image of $V(\mathfrak{q} S(\mathfrak{p}))$ in $\operatorname{Spec}(R)$, which is constructible since $R \rightarrow S(\mathfrak{p})$ is of finite type. This finishes the proof.

4. More preliminaries

4.1. Local equidimensionality.

Lemma 4.1.1. Let R be a Noetherian ring that is locally equidimensional and universally catenary. Let $R \rightarrow S$ be a flat ring map of finite type. If all nonempty generic fibers of $R \rightarrow S$ are equidimensional and have the same demension, then S is locally equidimensional.

Proof. Let d be the generic fiber dimension. Let $\mathfrak{q} \in \operatorname{Spec}(S)$ be above some $\mathfrak{p} \in \operatorname{Spec}(R)$. Let \mathfrak{q}_{0} be an arbitrary minimal prime of S contained in \mathfrak{q}, lying over $\mathfrak{p}_{0} \in \operatorname{Spec}(R)$. Then \mathfrak{p}_{0} is a minimal prime of R by flatness.

By [Stacks, Tag 02 IJ$], \operatorname{ht}\left(\mathfrak{q} / \mathfrak{q}_{0}\right)=\operatorname{ht}\left(\mathfrak{p} / \mathfrak{p}_{0}\right)+\operatorname{trdeg}_{\kappa\left(\mathfrak{p}_{0}\right)} \kappa\left(\mathfrak{q}_{0}\right)-\operatorname{trdeg}_{\kappa(\mathfrak{p})} \kappa(\mathfrak{q})$. By our assumptions, $\operatorname{trdeg}_{\kappa\left(\mathfrak{p}_{0}\right)} \kappa\left(\mathfrak{q}_{0}\right)=d$ is independent of \mathfrak{q}_{0} chosen. Also $\mathrm{ht}\left(\mathfrak{p} / \mathfrak{p}_{0}\right)$ does not depend on the choice of \mathfrak{q}_{0} since R is locally equidimensional. Thus $\operatorname{ht}\left(\mathfrak{q} / \mathfrak{q}_{0}\right)$ does not depend on the choice of \mathfrak{q}_{0}, so S is locally equidimensional.
4.2. Formally $\left(S_{1}\right)$ rings. The purpose of this subsection is to relax the excellence hypothesis in our main theorems. The "excellent" reader can skip this subsection.

Definition 4.2.1. Let R be a Noetherian ring. We say R is formally $\left(S_{1}\right)$ if $R_{\mathfrak{p}}^{\wedge}$ is $\left(S_{1}\right)$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Lemma 4.2.2. Let (R, \mathfrak{m}) be a Noetherian local ring. Then R is formally $\left(S_{1}\right)$ if and only if R^{\wedge} is $\left(S_{1}\right)$.

Proof. If R^{\wedge} is $\left(S_{1}\right)$, then R^{\wedge} is formally $\left(S_{1}\right)$ since a complete local ring is a G-ring [Stacks, Tag 07PS] and the property $\left(S_{1}\right)$ ascends [Stacks, Tag 0339]. Since $R \rightarrow R^{\wedge}$ is faithfully flat it is clear that R is formally $\left(S_{1}\right)$.

Lemma 4.2.3. Let R be a Noetherian ring, $R \rightarrow S$ a ring map of finite type. Assume that $R \rightarrow S$ is flat with $\left(S_{1}\right)$ fibers. Then if R is formally $\left(S_{1}\right)$, so is S.

Proof. Let $\mathfrak{q} \in \operatorname{Spec}(S)$, we want to show $S_{\mathfrak{q}}^{\wedge}$ is $\left(S_{1}\right)$. We may assume (R, \mathfrak{m}) local and $\mathfrak{q} \cap R=\mathfrak{m}$. Let $\mathfrak{Q} \in \operatorname{Spec}\left(S \otimes_{R} R^{\wedge}\right)$ be above \mathfrak{q}, so we have

where the vertical maps are faithfully flat. It suffices to show $\left(S \otimes_{R} R^{\wedge}\right)_{\hat{\mathfrak{Q}}}$ is $\left(S_{1}\right)$. Since $S \otimes_{R} R^{\wedge}$ is of finite type over R^{\wedge}, it is a G-ring [Stacks, Tag 07PX], so by [Stacks, Tag 0339] it suffices to show $S \otimes_{R} R^{\wedge}$ is $\left(S_{1}\right)$. By [Stacks, Tag 0339] again it suffices to show the fibers of $R^{\wedge} \rightarrow S \otimes_{R} R^{\wedge}$ are $\left(S_{1}\right)$.

Since the fibers of $R \rightarrow S$ are (S_{1}), it suffices to show if k is a field, K / k is a field extension, A is a finite type k-algebra that is $\left(S_{1}\right)$, then $A \otimes_{k} K$ is $\left(S_{1}\right)$. By [Stacks, Tag 0339], applied to the map $A \rightarrow A \otimes_{k} K$, it suffices to show $k^{\prime} \otimes_{k} K$ is (S_{1}) for all finitely generated extensions k^{\prime} / k. This ring is actually Cohen-Macaulay, see [Stacks, Tag 045M].

Lemma 4.2.4. Let R be a Noetherian local ring. If R^{\wedge} is $\left(S_{1}\right)$, then $R^{\wedge} / \mathfrak{p} R^{\wedge}$ is $\left(S_{1}\right)$ for all minimal primes $\mathfrak{p} \in \operatorname{Spec}(R)$.

Proof. Since $\mathfrak{p} \in \operatorname{Ass}_{R}(R), \operatorname{Ass}_{R^{\wedge}}\left(R^{\wedge} / \mathfrak{p} R^{\wedge}\right) \subseteq \operatorname{Ass}_{R^{\wedge}}\left(R^{\wedge}\right)$, cf. [Stacks, Tag 0312]. Thus $R^{\wedge} / \mathfrak{p} R^{\wedge}$ has no embedded primes, as desired.

4.3. Number of generators.

Lemma 4.3.1. Let P be a normal domain, A a finite torsion-free P-algebra of generic degree $\delta \geq 1$. Let $\mu \in \mathbf{Z}_{\geq 0}$ be such that A is generated by μ elements as a P-algebra.

Assume that $A \otimes_{P} \operatorname{Frac}(P)$ is a product of fields. Then A is generated by at most δ^{μ} elements as a P-module.

Proof. Let $a \in A$. In each factor of $A \otimes_{P} \operatorname{Frac}(P)$, a has a monic minimal polynomial whose coefficients are in P since P is normal. Since $A \rightarrow A \otimes_{P}$ $\operatorname{Frac}(P)$ is injective, the product of these minimal polynomials is a monic polynomial of degree $\leq \delta$ with coefficients in P that has a as a root. The rest is clear.

4.4. An easy estimate.

Lemma 4.4.1. Let (P, \mathfrak{m}, k) be a regular local ring containing \mathbf{F}_{p}. Let $d=$ $\operatorname{dim} P$. Let $n \in \mathbf{Z}_{\geq 0}, F \in P, F \notin \mathfrak{m}^{n+1}$. Then for all $e \in \mathbf{Z}_{\geq 1}, l(P /((F)+$ $\left.\left.\mathfrak{m}^{\left[p^{e}\right]}\right)\right) \leq n p^{e(d-1)}$.

Proof. We may assume $F \in \mathfrak{m}^{n}$ and k infinite. Arguing as in [Nag62, (40.2)], we can find a regular system of parameters x_{1}, \ldots, x_{d} of P such that $l\left(P /\left(F, x_{2}, \ldots, x_{d}\right)\right)=n$ and that F, x_{2}, \ldots, x_{d} is a regular sequence in P. Then $l\left(P /\left((F)+\mathfrak{m}^{\left[p^{e}\right]}\right)\right) \leq l\left(P /\left((F)+\left(x_{2}, \ldots, x_{d}\right)^{\left[p^{e}\right]}\right)\right)=n p^{e(d-1)}$.

5. Uniform bound

5.1. Bound from a single Cohen-Gabber type normalization.

Lemma 5.1.1 (cf. [Pol18, proof of Corollary 3.4]). Let A be an \mathbf{F}_{p}-algebra, \mathfrak{m} a maximal ideal of A, I an ideal of A, u an element of A such that $(I: u)=\mathfrak{m}$, e a positive integer. Let M be an A-module.

Write $J=I+(u)$. Then the followings hold.
(i) $M /\left(I^{\left[p^{e}\right]} M: M u^{p^{e}}\right) \cong J^{\left[p^{e}\right]} M / I^{\left[p^{e}\right]} M$.
(ii) If A / \mathfrak{m} is perfect and M is finitely generated, then for all $t \in \mathbf{Z}_{\geq 0}$,

$$
l_{A}\left(\frac{F_{*}^{t} M}{\left(I^{\left[p^{e}\right]} F_{*}^{t} M:_{*}^{t} M u^{p^{e}}\right)}\right)=l_{A}\left(\frac{J^{\left[p^{e+t}\right]} M}{I^{\left[p^{e+t}\right]} M}\right)<\infty .
$$

Proof. There is a canonical surjection $M \rightarrow J^{\left[p^{e}\right]} M / I^{\left[p^{e}\right]} M$ sending m to $u^{p^{e}} m$, showing (i). For (ii), finiteness follows from the fact that $\frac{J^{\left[p^{e+t}\right]} M}{I^{\left[p^{p+t}\right] M}}$ is a finitely generated $\left(A / \mathfrak{m}^{\left[p^{e+t}\right]}\right)$-module. To see the identity, notice that $\frac{F_{*}^{t} M}{\left(I^{\left[p^{e}\right]} F_{*}^{t} M:_{F_{*}^{t} M}^{u^{p}}\right)}=F_{*}^{t}\left(\frac{M}{\left(\left[\left[^{\left[p^{e+t}\right]} M:_{M} u^{p^{e+t}}\right)\right.\right.}\right)$, and that calculating the length of an $\left(F_{*}^{t} \mathfrak{m}\right)$-primary $\left(F_{*}^{t} A\right)$-module over $F_{*}^{t} A$ and A are the same since A / \mathfrak{m} is perfect.

Proposition 5.1.2. Let $\left(P, \mathfrak{m}_{P}, k\right)$ be a regular local ring of dimension d containing $\mathbf{F}_{p}, K=\operatorname{Frac}(P)$. Let A be a finite, generically étale, and torsionfree P-algebra generated by $m \in \mathbf{Z}_{>0}$ elements as a P-module.

Let $\Delta \in \mathbf{Z}_{\geq 0}$. Assume that there exist $e_{1}, \ldots, e_{n} \in A$ that map to a basis of $A \otimes_{P} K$ such that $D:=\operatorname{Disc}_{A / P}\left(e_{1}, \ldots, e_{n}\right) \notin \mathfrak{m}_{P}^{\Delta+1}$.

Then for all $e \leq e^{\prime} \in \mathbf{Z}_{\geq 1}$, and all ideals $I \subseteq J$ of A with $l_{A}(J / I)<\infty$, we have

$$
\left|\frac{1}{p^{e d}} l_{A}\left(\frac{J^{\left[p^{e}\right]}}{I^{\left[p^{e}\right]}}\right)-\frac{1}{p^{e^{\prime} d}} l_{A}\left(\frac{J^{\left[p^{e^{\prime}}\right]}}{I^{\left[p^{e^{\prime}}\right]}}\right)\right| \leq m \Delta p^{-e} l_{A}(J / I) .
$$

Proof. If $I \subseteq J_{1} \subseteq J$ and the statement is true for both inclusions, then it is true for $I \subseteq J$ by additivity. Thus we may assume $l_{A}(J / I)=1$. In particular $\mathfrak{m} J \subseteq I$ for a unique maximal ideal \mathfrak{m} of A. For a finite \mathfrak{m}-primary
A-module X, we have $l_{P}(X)=[\kappa(\mathfrak{m}): k] l_{A}(X)$, so it suffices to show

$$
\begin{equation*}
\left|\frac{1}{p^{e d}} l_{P}\left(\frac{J^{\left[p^{e}\right]}}{I^{\left[p^{e}\right]}}\right)-\frac{1}{p^{e^{\prime} d}} l_{P}\left(\frac{J^{\left[p^{e^{\prime}}\right]}}{I^{\left[p^{e^{\prime}}\right]}}\right)\right| \leq m \Delta p^{-e} l_{P}(J / I) \tag{1}
\end{equation*}
$$

when $l_{A}(J / I)=1$.
Let $\left(P, \mathfrak{m}_{P}, k\right) \rightarrow\left(P^{\prime}, \mathfrak{m}_{P^{\prime}}, k^{\prime}\right)$ be a flat map of regular local rings with $\mathfrak{m}_{P} P^{\prime}=\mathfrak{m}_{P^{\prime}}$, and let $A^{\prime}=A \otimes_{P} P^{\prime}$. Then it is clear that A^{\prime} is a finite, generically étale, and torsion-free P^{\prime}-algebra generated by $m \in \mathbf{Z}_{>0}$ elements as a P^{\prime}-module. The discriminant does not change, and $\mathfrak{m}_{P^{\prime}}^{\Delta+1} \cap P=\mathfrak{m}_{P}^{\Delta+1}$ by flatness, so all assumptions hold for $P^{\prime} \rightarrow A^{\prime}$. For any finite length P module $X, l_{P}(X)=l_{P^{\prime}}\left(X \otimes_{P} P^{\prime}\right)$. Thus to show (1) when $l_{A}(J / I)=1$, it suffices to show (1) for $A=A^{\prime}$ with $l_{A}(J / I)$ arbitrary, and thus it suffices to show (1) for $A=A^{\prime}$ with $l_{A}(J / I)=1$. Thus we may assume P complete and k algebraically closed. In particular, for any finite P-algebra Q and any finite length Q-module Y, we have $l_{P}(Y)=l_{Q}(Y)$.

Write $t=e^{\prime}-e$. Then $P^{1 / p^{t}}$ is a free P-module of rank $p^{t d}$. Write $H=P^{1 / p^{t}} \otimes_{P} A$. We have an exact sequence

$$
H \longrightarrow A^{1 / p^{t}} \longrightarrow L \longrightarrow 0
$$

of H-modules, where L is generated by m elements as a $P^{1 / p^{t}}$-module (since $A^{1 / p^{t}}$ is) and is annihilated by D (Lemma 2.2.2; here we use A torsion-free).

Write $J=I+(u)$, so $\mathfrak{m}_{P} u \subseteq I$, and we get an exact sequence
of H-modules with L^{\prime} a quotient of $L / \mathfrak{m}_{P}^{\left[p^{e}\right]} L$, see [Pol18, proof of Corollary 3.4] for more details. Note that H is a free A-module of rank $p^{t d}$. Lemma 5.1.1 gives the first inequality in the following chain, and the other two follows from constructions:

$$
\begin{aligned}
-p^{t d} l_{P}\left(J^{\left[p^{e}\right]} / I^{\left[p^{e}\right]}\right)+l_{P}\left(J^{\left[p^{e^{e}}\right]} / I^{\left[p^{e^{\prime}}\right]}\right) & \leq l_{P}\left(L^{\prime}\right) \\
& \leq l_{P}\left(L / \mathfrak{m}_{P}^{\left[p^{e}\right]} L\right) \\
& \leq m l_{P}\left(\frac{P^{1 / p^{t}}}{\mathfrak{m}_{P}^{\left[p^{e}\right]} P^{1 / p^{t}}+D \cdot P^{1 / p^{t}}}\right)
\end{aligned}
$$

Note that $\mathfrak{m}_{P}^{\left[p^{e}\right]} P^{1 / p^{t}}=\left(\mathfrak{m}_{P}^{1 / p^{t}}\right)^{\left[p^{e^{\prime}}\right]}$, and $D \notin\left(\mathfrak{m}_{P}^{1 / p^{t}}\right)^{p^{t} \Delta+1}$ since $D \notin \mathfrak{m}_{P}^{\Delta+1}$. By Lemma 4.4.1, the last quantity is at most $m p^{t} \Delta p^{e^{\prime}(d-1)}$. Therefore (recall $t=e^{\prime}-e$)

$$
\begin{equation*}
-\frac{1}{p^{e d}} l_{P}\left(J^{\left[p^{e}\right]} / I^{\left[p^{e}\right]}\right)+\frac{1}{p^{e^{\prime} d}} l_{P}\left(J^{\left[p^{e^{\prime}}\right]} / I^{\left[p^{e^{\prime}}\right]}\right) \leq m \Delta p^{-e} . \tag{2}
\end{equation*}
$$

Note that $H \rightarrow A^{1 / p^{t}}$ is injective since A is generically étale and torsionfree over P. By Lemma 2.2.2 again, we have an exact sequence

$$
D \cdot A^{1 / p^{t}} \longrightarrow H \longrightarrow L_{1} \longrightarrow 0
$$

where, again, L_{1} is generated by m elements over $P^{1 / p^{t}}$ since H is, and is annihilated by D by construction. Since A is torsion-free over $P, D^{p^{t}}$ is a nonzerodivisor on A, thus $D \cdot A^{1 / p^{t}} \cong A^{1 / p^{t}}$. By the same argument as above, we get (2) with the signs on the left hand side reversed. This shows (1) and thus the proposition.

Proposition 5.1.3. Let $\left(P, \mathfrak{m}_{P}, k\right)$ be a regular local ring of dimension d containing $\mathbf{F}_{p}, K=\operatorname{Frac}(P)$. Let A be a P-algebra, \mathfrak{N} an ideal of A, and M a finite A-module. Let $\Delta \in \mathbf{Z}_{\geq 0}, m, e_{0}, b \in \mathbf{Z}_{\geq 1}$.

Write $\bar{A}=A / \mathfrak{N}$. Assume the followings hold.
(i) \bar{A} is a finite, generically étale, and torsion-free P-algebra generated by m elements as a P-module.
(ii) There exist $e_{1}, \ldots, e_{n} \in \bar{A}$ that map to a basis of $\bar{A} \otimes_{P} K$ such that $D:=\operatorname{Disc}_{\bar{A} / P}\left(e_{1}, \ldots, e_{n}\right) \notin \mathfrak{m}_{P}^{\Delta+1}$.
(iii) $\mathfrak{N}^{\left[p^{e} 0\right]}=0$.
(iv) M has a filtration $M=M_{b} \supsetneq M_{b-1} \supsetneq \ldots \supsetneq M_{0}=0$ such that $M_{j} / M_{j-1} \cong \bar{A}$ as A-modules.
Then for all $e \in \mathbf{Z}, e>e_{0}$, and all ideals $I \subseteq J$ of A with $l_{A}(J / I)<\infty$, we have

$$
\left|\frac{b}{p^{\left(e-e_{0}\right) d}} l_{A}\left(\frac{J^{\left[p^{e-e} 0\right.} \bar{A}}{I^{\left[p^{e-e_{0}}\right]} \bar{A}}\right)-\frac{1}{p^{e d}} l_{A}\left(\frac{J^{\left[p^{e}\right]} M}{I^{\left[p^{e}\right]} M}\right)\right| \leq p^{e_{0}} b^{2} m \Delta p^{-e} l_{A}(J / I) .
$$

Proof. As before, we may assume $l_{A}(J / I)=1, J=I+(u)$; and we may assume P complete and k algebraically closed. Calculation of lengths therefore does not depend on the base ring chosen.

Write $H=F_{*}^{e_{0}} P \otimes_{P} A$ and $\bar{H}=F_{*}^{e_{0}} P \otimes_{P} \bar{A}$. As seen in the proof of Proposition 5.1.2, there exists an exact sequence

$$
0 \longrightarrow \bar{H} \longrightarrow F_{*}^{e_{0}} \bar{A} \longrightarrow L \longrightarrow 0
$$

where L is annihilated by D and is generated by m elements as a $F_{*}^{e_{0}} P$ module. By (iv), as an $F_{*}^{e_{0}} A$-module, $F_{*}^{e_{0}} M$ is a successive extension of b isomorphic copies of $F_{*}^{e_{0}} \bar{A}$, thus the same is true for $F_{*}^{e_{0}} M$ as an H-module. By (iii), $F_{*}^{e_{0}} M$ is an \bar{H}-module. Thus the exact sequence above implies the existence of an exact sequence of \bar{H}-modules

$$
0 \longrightarrow \bar{H}^{\oplus b} \longrightarrow F_{*}^{e_{0}} M \longrightarrow L^{\prime} \longrightarrow 0
$$

where L^{\prime} is a successive extension of b isomorphic copies of L. In particular, L^{\prime} is annihilated by $D^{b} \notin \mathfrak{m}_{P}^{b \Delta+1}$ and is generated by $b m$ elements as an $F_{*}^{e_{0}} P$-module.

We now proceed as in the proof of Proposition 5.1.2. Taking colon with respect to $I^{\left[p^{\left.e-e_{0}\right]}\right.}$ and $u^{p^{e-e_{0}}}$, Lemma 5.1.1 gives

$$
-b p^{e_{0} d} l_{P}\left(\frac{J^{\left[p^{\left.e-e_{0}\right]}\right.} \bar{A}}{I^{\left[p^{e-e_{0}}\right]} \bar{A}}\right)+l_{P}\left(\frac{J^{\left[p^{e}\right]} M}{I^{\left[p^{e}\right]} M}\right) \leq l_{P}\left(\frac{L^{\prime}}{\mathfrak{m}_{P}^{\left[p^{\left.e-e_{0}\right]}\right.} L^{\prime}}\right) .
$$

By Lemma 4.4.1, $l_{P}\left(L^{\prime} / \mathfrak{m}_{P}^{\left.\left[p^{e-e}\right]_{0}\right]} L^{\prime}\right) \leq b m p^{e_{0}} b \Delta p^{e(d-1)}$. Thus

$$
\begin{equation*}
-\frac{b}{p^{\left(e-e_{0}\right) d}} l_{A}\left(\frac{J^{\left[p^{e-e} e_{0}\right]} \bar{A}}{I^{\left[p^{e-e} 0\right.} \bar{A}}\right)+\frac{1}{p^{e d}} l_{A}\left(\frac{J^{\left[p^{e}\right]} M}{I^{\left[p^{e}\right]} M}\right) \leq p^{e_{0}} b^{2} m \Delta p^{-e} . \tag{3}
\end{equation*}
$$

The exact sequence above gives

$$
D^{b} . F_{*}^{e_{0}} M \longrightarrow \bar{H}^{\oplus b} \longrightarrow L^{\prime \prime} \longrightarrow 0
$$

where $L^{\prime \prime}$ is annihilated by D^{b} by construction, and is generated by $b m$ elements as a $F_{*}^{e_{0}} P$-module since \bar{A} is generated by m elements as a P module. By (iv), M is a torsion-free P-module. Thus D^{b} is a nonzerodivisor on $F_{*}^{e_{0}} M$ and $D^{b} . F_{*}^{e_{0}} M \cong F_{*}^{e_{0}} M$. This gives the inequality (3) with signs on the left hand side reversed, showing the proposition.

Corollary 5.1.4. Notations and assumptions as in Proposition 5.1.3. Then for all $e \leq e^{\prime} \in \mathbf{Z}, e>e_{0}$, and all ideals $I \subseteq J$ of A with $l_{A}(J / I)<\infty$, we have
$\left|\frac{1}{p^{e d}} l_{A}\left(\frac{J^{\left[p^{e}\right]} M}{I^{\left[p^{e}\right]} M}\right)-\frac{1}{p^{e^{\prime} d}} l_{A}\left(\frac{J^{\left[p^{e^{\prime}}\right]} M}{I^{\left[p^{e^{\prime}}\right]} M}\right)\right| \leq\left(1+\left(1+p^{e-e^{\prime}}\right) p^{e_{0}} b\right) b m \Delta p^{-e} l_{A}(J / I)$.
Note that $p^{e-e^{\prime}} \leq 1$.
Proof. Immediate from Propositions 5.1.2 and 5.1.3.
5.2. Uniform bound in excellent and less-excellent rings. We shall use the following fact.

Theorem 5.2.1. Let R be a Noetherian \mathbf{F}_{p}-algebra. Assume that R / \mathfrak{p} is $J-0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Then for every R-module M, there exists a constant $C=C(M)$ such that for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and all $e \in \mathbf{Z}_{\geq 1}, l\left(M_{\mathfrak{p}} / \mathfrak{p}^{\left[p^{e}\right]} M_{\mathfrak{p}}\right) \leq C p^{e \operatorname{dim} M_{\mathfrak{p}}}$.

Proof. This is [PTY, Theorem 2.11], and also follows from [Smi16, Lemma 15], where R is assumed to be excellent. However, both proofs work under the assumption R / \mathfrak{p} is $\mathrm{J}-0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Consider the following condition on a Noetherian ring R.

Condition 5.2.2.

(i) R is $\mathrm{J}-2$.
(ii) For all primes $\mathfrak{p}^{\prime} \subset \mathfrak{p}$ of R with $\operatorname{ht}\left(\mathfrak{p} / \mathfrak{p}^{\prime}\right)=1,\left(R_{\mathfrak{p}} / \mathfrak{p}^{\prime} R_{\mathfrak{p}}\right)^{\wedge}$ is $\left(R_{0}\right)$.
(iii) R is universally catenary.

Remark 5.2.3. An excellent R, or more generally a J-2, Nagata, and universally catenary R, satisfies Condition 5.2.2; and $R_{\text {red }}$ is formally (S_{1}) (Definition 4.2.1) for such R. See [Stacks, Tag 0BJ0].

Theorem 5.2.4 (cf. [Pol18, Theorem 4.4]). Let R be a Noetherian $\mathbf{F}_{p^{-}}$ algebra that satisfies Condition 5.2.2.

Then for every finite R-module M, there exists a constant $C(M)$ with the following property. For all $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\left(R / \sqrt{\operatorname{Ann}_{R}(M)}\right)_{\mathfrak{p}}$ is $\left(S_{1}\right)$, all ideals $I \subseteq J$ of $R_{\mathfrak{p}}$ with $l_{R_{\mathfrak{p}}}(J / I)<\infty$, and all $e \leq e^{\prime} \in \mathbf{Z}_{\geq 1}$, the following holds.
$\left|\frac{1}{p^{e \operatorname{dim} M_{\mathfrak{p}}}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e}\right]} M_{\mathfrak{p}}}{I^{\left[p^{e}\right]} M_{\mathfrak{p}}}\right)-\frac{1}{p^{e^{\prime}} \operatorname{dim} M_{\mathfrak{p}}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e^{\prime}}\right]} M_{\mathfrak{p}}}{I^{\left[p^{\left.e^{e}\right]}\right]} M_{\mathfrak{p}}}\right)\right| \leq C(M) p^{-e} l_{R_{\mathfrak{p}}}(J / I)$.
Here by convention the left hand side is zero if $M_{\mathfrak{p}}=0$.
Proof. We may replace R by $R / \operatorname{Ann}_{R}(M)$, so $\operatorname{dim} M_{\mathfrak{p}}=\operatorname{ht} \mathfrak{p}$ for all \mathfrak{p}. Let \mathfrak{p}_{0} be a minimal prime of R. Then there exists a submodule $N=N\left(\mathfrak{p}_{0}\right)$ of M that is a successive extension of isomorphic copies of R / \mathfrak{p}_{0}, such that $N_{\mathfrak{p}_{0}}=M_{\mathfrak{p}_{0}}$, by the theory of associated primes.

Let $N^{\prime}=\oplus_{\mathfrak{p}_{0}} N\left(\mathfrak{p}_{0}\right)$ (not necessarily a submodule of M), so M and N^{\prime} are isomorphic at all minimal primes of R, in particular $\operatorname{Ann}_{R}\left(N^{\prime}\right)$ is nilpotent. Apply the argument in [Pol18, proof of Corollary 3.4], using Theorem 5.2.1 instead of [Pol18, Proposition 3.3], we see that it suffices to prove the result for N^{\prime}.

In fact, it suffices to prove the result for each $N\left(\mathfrak{p}_{0}\right)$. Indeed, assume the result is true for each $N\left(\mathfrak{p}_{0}\right)$ and let $C\left(\mathfrak{p}_{0}\right)$ be the corresponding constant. Let $C^{\prime}\left(\mathfrak{p}_{0}\right)$ be the constant as in Theorem 5.2.1 for $N\left(\mathfrak{p}_{0}\right)$ and $C^{\prime \prime}\left(\mathfrak{p}_{0}\right)=$ $\max \left\{2 C^{\prime}\left(\mathfrak{p}_{0}\right), C\left(\mathfrak{p}_{0}\right)\right\}$. We claim that $\sum_{\mathfrak{p}_{0}} C^{\prime \prime}\left(\mathfrak{p}_{0}\right)$ works for N^{\prime}. To see this, let $\mathfrak{p} \in \operatorname{Spec}(R)$ be such that $\left.\left(R_{\text {red }}\right)\right)_{\mathfrak{p}}$ is $\left(S_{1}\right)$. Let \mathfrak{p}_{0} be a minimal prime of R contained in \mathfrak{p}. Since N^{\prime} is the direct sum of all $N\left(\mathfrak{p}_{0}\right)$, it suffices to show
$\left|\frac{1}{p^{e \text { ht }} \mathfrak{p}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e}\right]} N\left(\mathfrak{p}_{0}\right)_{\mathfrak{p}}}{I^{\left[p^{e}\right]} N\left(\mathfrak{p}_{0}\right)_{\mathfrak{p}}}\right)-\frac{1}{p^{e^{\prime} \text { ht }}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e^{\prime}}\right]} N\left(\mathfrak{p}_{0}\right)_{\mathfrak{p}}}{I I^{\left[p^{e^{\prime}}\right]} N\left(\mathfrak{p}_{0}\right)_{\mathfrak{p}}}\right)\right| \leq C^{\prime \prime}\left(\mathfrak{p}_{0}\right) p^{-e} l_{R_{\mathfrak{p}}}(J / I)$. If $h t\left(\mathfrak{p} / \mathfrak{p}_{0}\right)<\operatorname{ht}(\mathfrak{p})$, then this follows from [Pol18, Lemma 3.2] and the choice of $C^{\prime}\left(\mathfrak{p}_{0}\right)$. Otherwise, $\operatorname{ht}\left(\mathfrak{p} / \mathfrak{p}_{0}\right)=\operatorname{ht}(\mathfrak{p})$. Since $\left(R / \mathfrak{p}_{0}\right)_{\mathfrak{p}}^{\wedge}$ is $\left(S_{1}\right)$, see Lemma 4.2.4, the desired inequality follows from the choice of $C\left(\mathfrak{p}_{0}\right)$.

Thus we may assume M is a successive extension of isomorphic copies of R / \mathfrak{p}_{0} where \mathfrak{p}_{0} is a fixed minimal prime of R. Replace R by $R / \operatorname{Ann}_{R}(M)$ once again, we may assume \mathfrak{p}_{0} is the nilradical of R. Write $\bar{R}=R / \mathfrak{p}_{0}$. Let $b=l_{R_{\mathfrak{p}_{0}}}\left(M_{\mathfrak{p}_{0}}\right)$ and let $e_{0} \in \mathbf{Z}_{\geq 1}$ be such that $\left(\mathfrak{p}_{0}\right)^{\left[p^{\left.e_{0}\right]}\right.}=0$. By Theorem 5.2.1 and [Pol18, Lemma 3.2], it suffices to find a constant $C=C(M)$ such that the desired inequality holds for all $e^{\prime} \geq e>e_{0}$.

Note that \bar{R} is $\left(R_{0}\right)$ since it is an integral domain. Let $\bar{R} \rightarrow \bar{S}$ and δ, μ and Δ be as in Theorem 3.4.3. We shall show that $C=\left(1+2 p^{e 0} b\right) b \delta^{\mu} \Delta$ works. Let $R \rightarrow S$ be a syntomic ring map that lifts $\bar{R} \rightarrow \bar{S}$, see [Stacks, Tag
$07 \mathrm{M} 8]$. Then $\mathfrak{p}_{0} S$ is a nilpotent ideal of S, so we can identify $\operatorname{Spec}(S)$ and $\operatorname{Spec}(\bar{S})$. Fix $\mathfrak{p} \in \operatorname{Spec}(R)$ with $\bar{R}_{\mathfrak{p}}^{\wedge}\left(S_{1}\right)$, and let $\mathfrak{q} \in \operatorname{Spec}(\bar{S}), P \rightarrow \bar{S}_{\mathfrak{q}}^{\wedge}$ be as in the statement of Theorem 3.4.3. Lift the map $P \rightarrow \bar{S}_{\mathfrak{q}}^{\wedge}$ to a ring map $P \rightarrow S_{\mathfrak{q}}^{\wedge}$, possible as P is formally smooth over \mathbf{F}_{p} [Stacks, Tag 07 NL]. Note that $R \rightarrow S$ is flat quasi-finite, so $R_{\mathfrak{p}} \rightarrow S_{\mathfrak{q}}^{\wedge}$ is flat local with zero-dimensional closed fiber. Thus for all finite length $R_{\mathfrak{p}}$-modules $X, l_{R_{\mathfrak{p}}}(X) l_{S_{\mathfrak{q}}}\left(S_{\mathfrak{q}}^{\wedge} / \mathfrak{p} S_{\mathfrak{q}}^{\wedge}\right)=$ $l_{S_{\mathfrak{q}}}\left(X \otimes_{R_{\mathfrak{p}}} S_{\mathfrak{q}}^{\wedge}\right)$. Thus it suffices to prove an estimate as in the statement of Corollary 5.1.4 for the $S_{\mathfrak{q}}^{\wedge}$-module $M \otimes_{R} S_{\mathfrak{q}}^{\wedge}$ with the correct constants $b, m=\delta^{\mu}$, and Δ.

It thus suffices to verify the assumptions of Corollary 5.1.4 for $P \rightarrow S_{\mathfrak{q}}^{\wedge}$. Recall that \bar{R} is an integral domain, and is universally catenary by assumption. Thus $\bar{S}_{\mathfrak{q}}$ is equidimensional (Lemma 4.1.1 since $\bar{R} \rightarrow \bar{S}$ is flat quasifinite) and universally catenary, hence $\bar{S}_{\mathfrak{q}}^{\wedge}$ is equidimensional (Ratliff's result, [Stacks, Tag 0 AW3]). Thus all minimal primes of $\bar{S}_{\mathfrak{q}}^{\wedge}$ are above (0) $\subseteq P$. By Lemmas 4.2.2 and 4.2.3, $\bar{S}_{\mathfrak{q}}^{\wedge}$ is $\left(S_{1}\right)$, thus we see $\bar{S}_{\mathfrak{q}}^{\wedge}$ is a torsion-free P module. Note that $\bar{S}_{\mathfrak{q}}^{\wedge}$ is a finite and generically étale P-algebra (Theorem 3.4.3(iii)).

By Theorem 3.4.3(iv), we can find $y_{1}, \ldots, y_{\mu} \in \mathfrak{q}$ such that $\mathfrak{q} \bar{S}_{\mathfrak{q}}^{\wedge}=\mathfrak{m}_{P} \bar{S}_{\mathfrak{q}}^{\wedge}+$ (\underline{y}). Let $S^{\prime}=P\left[y_{1}, \ldots, y_{\mu}\right] \subseteq \bar{S}_{\mathfrak{q}}^{\wedge}$, and $\mathfrak{m}^{\prime}=\mathfrak{m}_{P} S^{\prime}+(\underline{y})$. Then we see that $\left(S^{\prime}, \mathfrak{m}^{\prime}\right)$ is a local ring and that $\bar{S}_{\mathfrak{q}}^{\wedge}=S^{\prime}+\mathfrak{m}^{\prime} \bar{S}_{\mathfrak{q}}^{\wedge}$ by Theorem 3.4.3(ii). Therefore $S^{\prime}=\bar{S}_{\mathfrak{q}}^{\wedge}$. By Lemma 4.3.1 (and Theorem 3.4.3(iii)), we see that $\bar{S}_{\mathfrak{q}}^{\wedge}$ is generated by at most δ^{μ} elements as a P-module.

Let $e_{1}, \ldots, e_{n} \in \bar{S}_{\mathfrak{q}}^{\wedge}$ be as in Theorem 3.4.3(v), and let $D=\operatorname{Disc}_{\bar{S}_{\mathfrak{q}}^{\wedge} / P}\left(e_{1}, \ldots, e_{n}\right)$. Then $D \notin \mathfrak{m}_{P}^{\Delta+1}$.

We have $\left(\mathfrak{p}_{0} S_{\mathfrak{q}}\right)^{\left[p^{\left.e_{0}\right]}\right.}=0$ since $\mathfrak{p}_{0}{ }^{\left[p^{\left.e_{0}\right]}\right.}=0$. Since M is a successive extension of b isomorphic copies of $\bar{R}, M \otimes_{R} S_{\mathfrak{q}}^{\wedge}$ is a successive extension of b isomorphic copies of $\bar{S}_{\mathfrak{q}}^{\wedge}$. We have verified all assumptions of and checked all constants in Corollary 5.1.4, showing what we want.

In view of Remark 5.2.3, the following is a special case of the theorem.
Corollary 5.2.5. Let R be a Noetherian \mathbf{F}_{p}-algebra. Assume that R is excellent, or more generally J-2, Nagata, and universally catenary.

Then for every finite R-module M, there exists a constant $C(M)$ with the following property. For all $\mathfrak{p} \in \operatorname{Spec}(R)$, all ideals $I \subseteq J$ of $R_{\mathfrak{p}}$ with $l_{R_{\mathfrak{p}}}(J / I)<\infty$, and all $e \leq e^{\prime} \in \mathbf{Z}_{\geq 1}$, the following holds.
$\left|\frac{1}{p^{\text {dim } M_{\mathfrak{p}}}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e}\right]} M_{\mathfrak{p}}}{I^{\left[p^{e}\right]} M_{\mathfrak{p}}}\right)-\frac{1}{p^{e^{\prime} \operatorname{dim} M_{\mathfrak{p}}}} l_{R_{\mathfrak{p}}}\left(\frac{J^{\left[p^{e^{\prime}}\right]} M_{\mathfrak{p}}}{I^{\left[p^{\left.e^{\prime}\right]}\right]} M_{\mathfrak{p}}}\right)\right| \leq C(M) p^{-e} l_{R_{\mathfrak{p}}}(J / I)$.

6. Applications: SEMI-CONTINUITY

6.1. Hilbert-Kunz multiplicity. For a Noetherian local \mathbf{F}_{p}-algebra (R, \mathfrak{m}), denote by $\lambda_{e}(R)$ the number $\frac{l\left(R / m^{\left[p^{e}\right]}\right)}{p^{\text {edim } R}}$. We have, by definition, $e_{\mathrm{HK}}(R)=$ $\lim _{e} \lambda_{e}(R)$, and the limit exists [Mon83].

The following slightly strengthens [SB79].
Lemma 6.1.1. Let R be a Noetherian \mathbf{F}_{p}-algebra, $\mathfrak{p} \in \operatorname{Spec}(R)$. Assume that R / \mathfrak{p} is $J-0$.

Let e be a positive integer. Then for some $g \notin \mathfrak{p}$ and all $\mathfrak{P} \in D(g) \cap V(\mathfrak{p})$, $\lambda_{e}\left(R_{\mathfrak{p}}\right)=\lambda_{e}\left(R_{\mathfrak{P}}\right)$.

Proof. We may assume R / \mathfrak{p} regular. By Theorem 3.4.1(i), we may assume for all $\mathfrak{P} \in V(\mathfrak{p})$, $\operatorname{ht}(\mathfrak{P})=\operatorname{ht}(\mathfrak{p})+\operatorname{ht}(\mathfrak{P} / \mathfrak{p})$. It remains to apply Discussion 3.4.2 to the module $M=R / p^{\left[p^{e}\right]}$ and the regular sequence $\pi_{1}=t_{1}^{p^{e}}, \ldots, \pi_{h}=t_{h}^{p^{e}}$, where $t_{1}, \ldots, t_{h} \in R_{\mathfrak{F}}$ map to a regular sequence of parameters of $R_{\mathfrak{P}} / \mathfrak{p} R_{\mathfrak{P}}$.
Corollary 6.1.2. Let R be a Noetherian \mathbf{F}_{p}-algebra. Assume that R / \mathfrak{p} is $J-0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$, and that R is catenary and locally equidimensional.

Let e be a positive integer. Then the function $\mathfrak{p} \mapsto \lambda_{e}\left(R_{\mathfrak{p}}\right)$ is constructible and upper semi-continuous.
Proof. By Lemma 6.1.1 our function is constructible. We have ht $(\mathfrak{P})=$ $\operatorname{ht}(\mathfrak{p})+\operatorname{ht}(\mathfrak{P} / \mathfrak{p})$ for all $\mathfrak{p} \subseteq \mathfrak{P} \in \operatorname{Spec}(R)$, since R is catenary and locally equidimensional. By [Kun76, Corollary 3.8], our function is non-decreasing along specialization. Thus our function is upper semi-continuous by general topology [Stacks, Tag 0542].
Theorem 6.1.3 (cf. [Smi16, Theorem 23]). Let R be a Noetherian $\mathbf{F}_{p^{-}}$ algebra. Assume that R satisfies Condition 5.2.2, and that $R_{\text {red }}$ is formally $\left(S_{1}\right)$ (Definition 4.2.1). (For example, if R is excellent, or if R is J-2, Nagata, and universally catenary, see Remark 5.2.3.)

If R is locally equidimensional, then the function $\mathfrak{p} \mapsto e_{\mathrm{HK}}\left(R_{\mathfrak{p}}\right)$ is upper semi-continuous.
Proof. Apply Theorem 5.2.4 to $M=R, I=\mathfrak{p} R_{\mathfrak{p}}, J=R_{\mathfrak{p}}$, we see that our function is the uniform limit of the functions $\mathfrak{p} \mapsto \lambda_{e}\left(R_{\mathfrak{p}}\right)$. These functions are upper semi-continuous by Corollary 6.1.2. Thus our function is upper semi-continuous as well.
6.2. F-signature. For a Noetherian local \mathbf{F}_{p}-algebra (R, \mathfrak{m}), denote by $s_{e}(R)$ the e th normalized F-splitting number as in [EY11, Definition 1.1]. The limit $s(R)=\lim s_{e}(R)$ is called the F-signature of R. The limit was first shown to exist in [Tuc12]. (We also recover the existence in Proposition 6.2.4 below.)

We use the following facts.
Fact 6.2.1. Let $(R, \mathfrak{m}) \rightarrow\left(R^{\prime}, \mathfrak{m}^{\prime}\right)$ be a flat map of Noetherian local $\mathbf{F}_{p^{-}}$ algebras with $\mathfrak{m} R^{\prime}=\mathfrak{m}^{\prime}$. Then $s_{e}(R)=s_{e}\left(R^{\prime}\right)$ for all e, see [Yao06, Remark 2.3(3)].

Fact 6.2.2. For a Noetherian local \mathbf{F}_{p}-algebra $(R, \mathfrak{m}), s_{e}(R)>0$ for some e if and only if $s_{e}(R)>0$ for all e, if and only if R is F-pure. Indeed, using the notations preceding [EY11, Definition 1.1], $s_{e}(R)>0$ if and only if $R^{(e)} \otimes_{R} k \rightarrow R^{(e)} \otimes_{R} E$ is nonzero, if and only if k is not killed in $R^{(e)} \otimes_{R} E$, if and only if $R \rightarrow R^{(e)}$ is pure, see [Fed83, Proposition 1.3(5)].
Fact 6.2.3. Let (R, \mathfrak{m}) be a Noetherian local \mathbf{F}_{p}-algebra. For two positive integers e, e^{\prime}, there exists an \mathfrak{m}-primary ideal I and an element $u \in(I: \mathfrak{m})$ such that $s_{e}(R)=p^{-e \operatorname{dim} R} l\left((I, u)^{\left[p^{e}\right]} / I^{\left[p^{e}\right]}\right)$ and $s_{e^{\prime}}(R)=p^{-e^{\prime} \operatorname{dim} R} l\left((I, u)^{\left[p^{e^{\prime}}\right]} / I^{\left[p^{e^{\prime}}\right]}\right)$. Indeed, by Fact 6.2 .1 we may assume R complete, and by Fact 6.2 .2 we may assume $R F$-pure (otherwise take $I=\mathfrak{m}$ and $u=0$), in particular reduced, so [Pol18, Lemma 5.4] applies.
Proposition 6.2.4. Let R be a Noetherian ring that satisfies Condition 5.2.2. Let $C=C(R)$ be as in Theorem 5.2.4.

Then for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and all $e \leq e^{\prime} \in \mathbf{Z}_{\geq 1},\left|s_{e}\left(R_{\mathfrak{p}}\right)-s_{e^{\prime}}\left(R_{\mathfrak{p}}\right)\right| \leq C p^{-e}$.
Proof. Let $\mathfrak{p} \in \operatorname{Spec}(R)$. If $R_{\mathfrak{p}}^{\wedge}$ is not reduced, then $s_{e}\left(R_{\mathfrak{p}}\right)=s_{e^{\prime}}\left(R_{\mathfrak{p}}\right)=0$, see Facts 6.2.2 and 6.2.1. So we only need to show the inequality for those \mathfrak{p} with $R_{\mathfrak{p}}^{\wedge}$ reduced. By Fact 6.2.3, we need to show

$$
\left|\frac{1}{p^{e \text { htp }}} l_{R_{\mathfrak{p}}}\left(J^{\left[p^{e}\right]} / I^{\left[p^{e}\right]}\right)-\frac{1}{p^{e^{\prime} \text { htp }}} l_{R_{\mathfrak{p}}}\left(J^{\left[p^{e^{\prime}}\right]} / I^{\left[p^{e^{\prime}}\right]}\right)\right| \leq C p^{-e} .
$$

where I is a $\mathfrak{p} R_{\mathfrak{p}}$-primary ideal of $R_{\mathfrak{p}}$, and $J=(I, u)$ for some $u \in(I$: $\mathfrak{p} R_{\mathfrak{p}}$). In particular $l_{R_{\mathfrak{p}}}(J / I) \leq 1$. The inequality now follows from Theorem 5.2.4.

Lemma 6.2.5. Let R be a Noetherian ring such that R / \mathfrak{p} is J-0 for all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Assume that either R is Gorenstein, or that R is a locally equidimensional quotient of a regular Noetherian ring. Then for all e, the function $\mathfrak{p} \mapsto s_{e}\left(R_{\mathfrak{p}}\right)$ is lower semi-countinuous.

Proof. This is [EY11, Theorems 3.4 and 4.2], except that R is assumed to be excellent there. However, from the proof it is clear that R / \mathfrak{p} being J-0 for all $\mathfrak{p} \in \operatorname{Spec}(R)$ is enough.

The following result is likely to be well-known; we include it for completeness.

Lemma 6.2.6. Let (R, \mathfrak{m}, k) be a Noetherian local \mathbf{F}_{p}-algebra. Then the followings hold.
(i) If $s(R)>0$, then R is strongly F-regular.
(ii) If R is a G-ring then the converse to (i) holds.

Proof. Assume $s(R)>0$. Let $\left(R^{\prime}, \mathfrak{m}^{\prime}, k^{\prime}\right)$ be a Noetherian local flat R-algebra with R^{\prime} complete, $\mathfrak{m} R^{\prime}=\mathfrak{m}^{\prime}$, and k^{\prime} algebraically closed. Fact 6.2 .1 shows $s\left(R^{\prime}\right)>0$, and [AL02] shows R^{\prime} stongly F-regular. Thus R is stongly F regular by [Has10, Lemma 3.17].

Conversely, assume R is a G-ring and strongly F-regular. Then R is normal [Has10, Corollary 3.7], thus excellent, cf. [Stacks, Tags 0C23 and 0AW6]. By [Has10, Lemma 3.28] the completion R^{\wedge} is strongly F-regular. By [Has10, Lemma 3.30] there exists a flat local ring map $R^{\wedge} \rightarrow R^{\prime}$ such that R^{\prime} is F-finite and strongly F-regular, and that $\mathfrak{m} R^{\prime}$ is the maximal ideal of R^{\prime}. By [AL02], $s\left(R^{\prime}\right)>0$, and $s(R)=s\left(R^{\prime}\right)$ by Fact 6.2.1.
Theorem 6.2.7 (cf. [Pol18, Theorem 5.6]). Let R be a Noetherian $\mathbf{F}_{p^{-}}$ algebra that satisfies Condition 5.2.2(i)(ii). Assume that either R is Gorenstein, or that R is a quotient of a regular Noetherian ring. Then the function $\mathfrak{p} \mapsto s\left(R_{\mathfrak{p}}\right)$ is lower semi-countinuous.
Proof. Note that $s\left(R_{\mathfrak{p}}\right) \geq 0$ for all \mathfrak{p}. If $s\left(R_{\mathfrak{p}}\right)>0$ for some \mathfrak{p}, then $R_{\mathfrak{p}}$ is normal by Lemma 6.2.6 and [Has10, Corollary 3.7]. Since R is J-2, the normal locus of R is open, see [EGA IV ${ }_{2}$, Corollaire 6.13.5]. Thus we may assume R normal, in particular locally equidimensional.

Since a Cohen-Macaulay ring is universally catenary [Stacks, Tag 00Nm], R satisfies Condition 5.2.2. By Proposition 6.2.4 the function $\mathfrak{p} \mapsto s\left(R_{\mathfrak{p}}\right)$ is the uniform limit of the functions $\mathfrak{p} \mapsto s_{e}\left(R_{\mathfrak{p}}\right)$ which are lower semi-countinuous by Lemma 6.2.5, thus $\mathfrak{p} \mapsto s\left(R_{\mathfrak{p}}\right)$ is lower semi-countinuous.
Corollary 6.2.8. Let R be a Noetherian quasi-excellent \mathbf{F}_{p}-algebra. Assume that R is either Gorenstein or a quotient of a regular Noetherian ring. Then the locus

$$
\left\{\mathfrak{p} \in \operatorname{Spec}(R) \mid R_{\mathfrak{p}} \text { is strongly F-regular }\right\}
$$

is open.
Proof. For $\mathfrak{p} \in \operatorname{Spec}(R), R_{\mathfrak{p}}$ is strongly F-regular if and only if $s\left(R_{\mathfrak{p}}\right)>0$, see Lemma 6.2.6.

Remark 6.2.9. A quasi-excellent quotient of a regular ring is always a quotient of a quasi-excellent regular ring. This follows immediately from [KS21].

Remark 6.2.10. Kevin Tucker informed the author that he was able to prove the openness of the strongly F-regular locus for any quotient of a regular \mathbf{F}_{p}-algebra via a different method.

References

[AL02] Ian Aberbach and Graham Leuschke. "The F-signature and strong F-regularity". In: Mathematical Research Letters 10.1 (2002), pp. 51-56.
[Bou83] Nikolas Bourbaki. Algébre commutative, chapitres 8 et 9. Éléments de mathématique. Masson, Paris, 1983.
[EY11] Florian Enescu and Yongwei Yao. "The lower semicontinuity of the Frobenius splitting numbers". In: Mathematical Proceedings of the Cambridge Philosophical Society 150.1 (2011), pp. 35-46.
[Fed83] Richard Fedder. " F-purity and rational singularity". In: Trans. Amer. Math. Soc. 278.2 (1983), pp. 461-480.
[Fle77] Hubert Flenner. "Die Sätze von Bertini für locale Ringe". In: Math. Ann. 111 (1977), pp. 97-111.
[GO08] Ofer Gabber and Fabrice Orgogozo. "Sur la p-dimension des corps". In: Invent. Math. 174 (2008), pp. 47-80.
$\left[E G A V_{2}\right]$ Alexander Grothendieck. "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Seconde partie". In: Inst. Hautes Études Sci. Publ. Math. 24 (1965). With a collaboration of Jean Dieudonné, pp. 55-231.
[Has10] M. Hashimoto. " F-pure homomorphisms, strong F-regularity, and F-injectivity". In: Comm. Algebra 38.12 (2010), pp. 45694596.
[HH90] Melvin Hochster and Craig Huneke. "Tight closure, invariant theory, and the Briançon-Skoda theorem". In: J. Amer. Math. Soc. 3.1 (1990), pp. 31-116.
[Kun76] Ernst Kunz. "On Noetherian rings of characteristic p ". In: Amer. J. Math. 98 (1976), pp. 999-1013.
[KS21] Kazuhiko Kurano and Kazuma Shimomoto. "Ideal-adic completion of quasi-excellent rings (after Gabber)". In: Kyoto J. Math. 61.3 (2021), pp. 707-722.
[Lan86] Serge Lang. Algebraic Number Theory, 2nd Ed. Vol. 110. Graduate Texts in Mathematics. Springer New York, NY, 1986, pp. xiii +357 .
[Mon83] Paul Monsky. "The Hilbert-Kunz function". In: Math. Ann. 263.1 (1983), pp. 43-49.
[Nag62] Masayoshi Nagata. Local Rings. Vol. 13. Interscience tracts in pure and applied mathematics. Interscience Publishers, a division of John Wiley \& Sons New York-London, 1962, pp. xiv+234.
[OS15] Tadashi Ochiai and Kazuma Shimomoto. "Bertini theorem for normality on local rings in mixed characteristic (applications to characteristic ideals)". In: Nagoya Math. J. 218 (2015), pp. 125173.
[PTY] Felipe Pérez, Kevin Tucker, and Yongwei Yao. Uniform Upper Bounds for Hilbert-Kunz Numbers. URL: https://kftucker. people. uic.edu/home/notes/Uni formityNote. 26Apr2021. pdf.
[Pol18] Thomas Polstra. "Uniform Bounds in F-Finite Rings and Lower Semi-Continuity of the F-Signature". In: Trans. Amer. Math. Soc. 370.5 (2018), pp. 3147-3169.
[SB79] Nicolas I. Shepherd-Barron. "On a problem of Ernst Kunz concerning certain characteristic functions of local rings". In: Arch. Math. (Basel) 31.6 (1978/79), pp. 562-564.
[Ska16] Chris Skalit. "Koszul factorization and the Cohen-Gabber theorem". In: Illinois Journal of Mathematics 60.3-4 (2016), pp. 833844.
[Smi16] Ilya Smirnov. "Upper semi-continuity of the Hilbert-Kunz multiplicity". In: Compos. Math. 152.3 (2016), pp. 477-488.
[Stacks] The Stacks Project authors. The Stacks Project. URL: https: //stacks.math. columbia.edu/.
[Tri94] Vijaylaxmi Trivedi. "A local Bertini theorem in mixed characteristic". In: Comm. in Algebra 22 (1994), pp. 823-827.
[Tuc12] Kevin Tucker. "F-signature exists". In: Invent. Math. 190 (2012), pp. 743-765.
[Yao06] Yongwei Yao. "Observations on the F-signature of local rings of characteristic p". In: Journal of Algebra 299.1 (2006), pp. 198218.

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA

Email address: slyu@uic.edu
URL: https://web.math.princeton.edu/~slyu/

[^0]: ${ }^{1}$ Flenner stated the theorem for mixed characteristic rings as well, but his proof in that case was wrong. This is explained and fixed in [Tri94].

[^1]: ${ }^{2}$ In other words, A / \mathfrak{p} is unibranch [Stacks, Tag 0BPZ].
 ${ }^{3}$ In particular, A / \mathfrak{p} is geometrically unibranch [Stacks, Tag 0BPZ].

[^2]: ${ }^{4}$ In fact, the normalization of a one-dimensional Noetherian domain is always Noetherian by the theorem of Krull-Akizuki [Stacks, Tag 00PG].

[^3]: ${ }^{5}$ This, by convention, means that $A \rightarrow B$ is a local map of local rings such that B is the localization of a syntomic A-algebra at a prime ideal.

