A characterization of Noetherian local rings

Shiji Lyu

January 2024

Theorem. Let (R, \mathfrak{m}) be a local ring. Then R is Noetherian if and only if the following two conditions are satisfied.

- (i) \mathfrak{m} is finitely generated.
- (ii) Every finitely generated ideal of R is a finite intersection of finitely generated primary ideals.

Proof. "Only if" is clear. Assume (ii) and (i). Let \mathfrak{p} be a prime ideal of R. It suffices to show \mathfrak{p} finitely generated. By induction on the number of generators of \mathfrak{m} , we may assume that there exists $a \in R$ such that $aR + \mathfrak{p}$ is finitely generated. We may assume $a \notin \mathfrak{p}$. Take a finitely generated ideal $\mathfrak{p}_0 \subseteq \mathfrak{p}$ with $aR + \mathfrak{p}_0 = aR + \mathfrak{p}$, and let \mathfrak{p}_1 be an arbitrary finitely generated ideal with $\mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \mathfrak{p}$. We shall show that $\mathfrak{p}_0 = \mathfrak{p}_1$, thus $\mathfrak{p} = \mathfrak{p}_0$ is finitely generated.

By (ii), we have

$$\mathfrak{p}_1 = igcap_{i=1}^n \mathfrak{q}_i$$

where \mathfrak{q}_i are finitely generated primary ideals. Fix i with $\mathfrak{q}_i \subseteq \mathfrak{p}$, possible since $\mathfrak{p}_1 \subseteq \mathfrak{p}$. Then $aR + \mathfrak{p}_0 = aR + \mathfrak{q}_i = aR + \mathfrak{p}$, so $\mathfrak{q}_i = aR \cap \mathfrak{q}_i + \mathfrak{p}_0$. Since \mathfrak{q}_i is primary and since $a \notin \mathfrak{p}$, we see $aR \cap \mathfrak{q}_i = a\mathfrak{q}_i$. By Nakayama's Lemma $\mathfrak{q}_i = \mathfrak{p}_0$, so $\mathfrak{p}_1 = \mathfrak{p}_0$, as desired.