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1. INTRODUCTION

Let G be a connected, reductive algebraic group defined over Fq and G the finite reductive

group of Fq-rational points of G. Let ` be a prime not dividing q. Each `-block of G

determines a conjugacy class (s) in a dual group G∗ of G, where s ∈ G∗ is an `′-semi simple

element. The block is said to be isolated if CG∗(s) has the same semisimple rank as G∗. If a

block is not isolated, the characters in the block can be obtained by Lusztig induction from

a Levi subgroup of G which is a dual of CG∗(s). Thus it is important to classify the isolated

blocks of G.

If G is a classical group with a connected center, a description of all the `-blocks of

G (` odd, q odd) was given in [6] in combinatorial terms using the language of symbols.

On the other hand, Cabanes and Enguehard [4] have given descriptions in terms of Lusztig

induction of the blocks of arbitrary finite reductive groups, with some restrictions on `.

In an earlier paper of the author [10] the isolated blocks (` odd, q odd) of Sp(2n, q) or

SO±(2n, q) were described via Lusztig induction. A combinatorial description of the blocks

was, however, not given in [4] or [10] for these groups since such a description of Lusztig

induction was not available. However, a combinatorial description of Lusztig induction in

the cases of Sp(2n, q) and O±(2n, q) was recently given by Waldspurger [11], provided q in

large, during his proof of the Lusztig conjecture for these groups. Using this description we

give a parameterization of the isolated blocks of Sp(2n, q) and O±(2n, q) (` odd, q odd) by

means of pairs of symbols which are e-cores, where e is the order of q2 mod `. We also give

a description of the characters in a block which lie in the Lusztig rational series E(G, (s)),
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where (s) is the `′-semisimple class corresponding to the block, again by pairs of symbols.

Thus this paper represents a completion of the project started in [6].

We note that the case of SO(2n + 1, q) was treated in [6]. Finally we remark that

a combinatorial description of blocks of this kind fits in with a philosophy of Broué, by

which representation-theoretic data on a finite reductive group should be determined by

data independent of q.

Notation: If G is a finite group, Irr(G) is the set of (complex) irreducible characters

of G, and C(G) is the space of complex-valued class functions on G with the usual inner

product 〈 , 〉.

2. ISOLATED SEMISIMPLE CLASSES

Let G denote the algebraic group Sp(2n) or SO(2n), and let G = Sp(2n, q) or SOη(2n, q) q

odd, η = ±1. We will usually omit q and write G = Sp(2n) or SOη(2n). The set Irr(G) is

partitioned into geometric series by Deligne-Lusztig theory, and further into rational series

E(G, (s)) where s ∈ G∗ is an `′-semisimple element (see [4, 8.23]). Then the set E`(G, (s))

which is the union of the rational series E(G, (t)) such that t`′ = s is a union of `-blocks

of G (see [4, 9.12]). We note that in our cases if G = Sp(2n) (resp. SOη(2n)) then G∗ =

SO(2n + 1) (resp. SOη(2n)). Each `-block of G (block, for short) then determines an `′-

semisimple class (s) ⊂ G∗. If CG∗(s) has the same semisimple rank as G∗ we say (s) is an

isolated class and the corresponding block is an isolated block.

In these cases, suppose G∗ acts on a vector space V ∗. Then an isolated class consists

of elements whose eigenvalues are ±1; in other words, an element s of such a class satisfies
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s2 = 1.

We now consider the centralizers of isolated semisimple elements (see [6, p. 126], [11,

p. 57]). Let H0 be the group of Fq-rational points of C0
G∗(s), and H = CG∗(s). We have the

following cases:

Case 1. G = Sp(2n). Then H0
∼= SO(2m + 1) × SOη(2k) for some m, k with m + k = n

and H ∼= (O(2m+ 1)×Oη(2k)) ∩ SO(2n+ 1).

Case 2. G = Oη(2n). We note that s ∈ SOη(2n). Then H0
∼= SOε(2m) × SOηε(2k) for

some m, k with m+ k = n, ε = ±1, H ∼= Oε(2m)×Oηε(2k).

Case 3. G = SOη(2n). Then H0 is as in Case 2 and H = H̃ ∩ G, where H̃ ∼= Oε(2m) ×

Oηε(2k).

3. SQUARE-UNIPOTENT CHARACTERS

By a theorem of Lusztig [8], if G = Sp(2n) or SOη(2n) the characters in E(G, (s)) are

in bijection with E(H, (1)). If G = Oη(2n) we define the characters in E(G, (s)) to be

those which cover the characters in E(SOη(2n), (s)). Following Waldspurger, we call the

characters in E(G, (s)) where G = Sp(2n), SOη(2n) or Oη(2n), where s2 = 1, square-

unipotent characters (quadratiques-unipotent in [11]).

We give the classification of square-unipotent characters as in [11]. We first consider the

case s = 1, i.e. the unipotent characters. By the work of Lusztig [7] the unipotent characters

of classical groups are parameterized by equivalence classes of symbols. We refer to [3, p. 375,

pp. 466-476; 2, p. 48] for a description of the symbols associated with unipotent characters
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of Sp(2n) and SOη(2n), including definitions of the equivalence relations on symbols and

the rank and defect of a symbol.

We denote a symbol by Λ = (S, T ) where S, T ⊆ N∪{0}. If Λ is unordered, it is regarded

as the same as (T, S) and also the same as the symbol obtained by a shift operation from

itself (see [3], p. 375). The defect of Λ is |S| − |T |. The unipotent characters of Sp(2n),

SO+(2n), SO−(2n) are in bijection with unordered symbols of rank n and odd defect, defect

≡ 0(mod 4) and defect ≡ 2(mod 4) respectively, except that in the case of SO+(2n) there

are two characters corresponding to each Λ = (S, S). We say Λ = (S, T ) is non-degenerate

if S 6= T and degenerate if S = T .

The unipotent characters of Oη(2n) are then parameterized by (equivalence classes of)

ordered symbols. In particular, a degenerate symbol corresponds to just one character. This

parameterization was given by Asai [1, p. 552] for O+(2n).

Following [11] we define a map σ on ordered symbols by σ(S, T ) = (T, S). We now

describe the parameterization of square-unipotent characters of Sp(2n) and Oη(2n) given

in [11, 4.4, 4.11]. Let S̃n,d be the set of ordered symbols of rank n and defect d, and let

Sn,d = S̃n,d ∪ S̃n,−d, module the relation Λ ∼ σ(Λ).

Let

Sn,odd =
⋃
d∈N
d odd

Sn,d, S̃n, even =
⋃
d∈Z

d even

S̃n,d,

S̃S̃n, even =
⋃

n1+n2=n

S̃n1, even × S̃n2, even ,

SS̃n, mix =
⋃

n1+n2=n

Sn1, odd × S̃n, even.
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We then have:

(3.1). There is a bijection π of S̃S̃n, even onto the set of square-unipotent characters of

O+(2n)∪O−(2n). If (Λ1,Λ2) ∈ S̃S̃n, even, π(Λ1,Λ2) ∈ E(Oη(2n), (s)) where η = (−1)(d1−d2)/2,

d1, d2 being the defects of Λ1,Λ2. Then s ∈ SOη(2n) has 2 rank (Λ1) (resp. 2rank (Λ2))

eigenvalues equal to 1 (resp. −1).

(3.2). There is a bijection π of SS̃n,mix onto the set of square-unipotent characters of Sp(2n).

If (Λ1,Λ2) ∈ SS̃n,mix, π(Λ1,Λ2) ∈ E(Sp(2n), (s)) where s has 2 rank (Λ1) (resp. 2 rank (Λ2))

eigenvalues equal to 1 (resp. −1).

These parameterizations are obtained by Harish-Chandra induction from cuspidal square-

unipotent characters of suitable Levi subgroups, and the labelling of the cuspidal character

is not unique.

Remark. We have taken the liberty of replacing “pair” by “even” and “imp” by “odd” in

[11].

(3.3). We now describe the restriction of π(Λ1,Λ2) ∈ E(Oη(2n), (s)) to SOη(2n) [11, 9.8].

The restriction is irreducible unless both Λ1,Λ2 are degenerate, in which case it is the sum

of two irreducible characters. The characters in the restriction are in bijection with the

unipotent characters of H lying above the character of H0 parameterized by (Λ1,Λ2).

4. LUSZTIG INDUCTION

For any finite reductive group G and Levi subgroup L we have the Lusztig twisted induction

map (see e.g. 4, p. 125) RG
L : ZIrr(L) → ZIrr(G). The adjoint map is denoted by ∗RG

L :

ZIrr(G) → ZIrr(L). The definition of the RG
L map involves the algebraic group G and a
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parabolic subgroup P of G with a Levi subgroup L whose subgroup of Fq-rational points

is L. It is not known in general if the definition of RG
L is independent of the choice of P,

except for large q. If we have Levi subgroups L,M of G arising from Levi subgroups L,M

of G with L ≤ M, with suitable choices of parabolic subgroups containing L and M we

have transitivity RG
M · RM

L = RG
L (see [11], p. 10). A more general definition of the RG

L map

applicable to disconnected groups such as O(2n) can be found in ([11], p. 9) or ([5], p. 364).

The RG
L map was known explicitly for classical groups in the following cases:

(i) unipotent characters [1]

(ii) all characters, classical groups with a connected center [9].

These results were used in [6] to give a combinatorial description of the blocks.

We now describe the RG
L map for square-unipotent characters of Sp(2n) and Oη(2n), due

to Waldspurger.

Let a 6= 0 be an integer. Asai [1] has introduced operations Ia, I
−
a , Ja on symbols.

The operations Ia, Ja can be regarded as “adding an a-hook” and “adding an a-cohook”

respectively to a symbol Λ. They can be described as follows (see [6, p. 159]). Let Λ = (S, T ).

We say a symbol Λ′ is obtained from Λ by adding an a-hook if it is obtained by deleting a

member x of S (or T ) and inserting x + a in S (or T ). We say Λ′ is obtained from Λ by

adding an a-cohook if it is obtained from Λ by deleting a member x of s (or T ) and inserting

x+ a in T (or S).

Then Ia(Λ), Ja(Λ) are Z-linear combinations of symbols obtained from Λ by adding an

a-hook, a-cohook, respectively. These are given in [2, p. 49, p. 52] and [11, 2.3].
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If Λ′ is obtained from Λ by adding an a-hook or a-cohook, we say Λ is obtained from Λ′

by deleting an a-hook or a-cohook. If it is not possible to delete an a-hook (resp. a-cohook)

from Λ we say Λ is an a-core (resp. a-cocore). From now on we will use the notation a-core

for either an a-core or an a-cocore, and a-hook for either an a-hook or a-cohook, depending

on the context, unless it is necessary to specify one of the two. We have a Fourier transform

F on symbols introduced by Lusztig (see [3, p. 384]).

(4.1). We then have FJaF = Ia,FI−a F = σJa where, as before σ(S, T ) = (T, S) [W, p. 18].

We now take G = Oη(2n) or Sp(2n), L = T1 × T2 × L0 where L0
∼= Oη′

(2n) or Sp(2m),

and T1 and T2 are both tori of orders qa − 1 or qa + 1. We remark that if we can describe

the RG
L map in this case, we can then describe the map where T1 and T2 are replaced by

products of tori, by transitivity.

Consider a square-unipotent character λ of L as follows. Let λ = 1 × ζ × ψ, where 1 is

the trivial character of T1, ζ is the non-trivial character of order 2 of T2 and ψ = π(µ1, µ2) is

a square-unipotent character of L0.

(4.2). Theorem [11]. Let G = Sp(2n) or Oη(2n). Let q > 2n. With the above notation, the

constituents of RG
L (λ) are the π(Λ1,Λ2) where Λ1,Λ2 are obtained from µ1, µ2 respectively by

adding an a-hook (qa − 1 case) or an a-cohook (qa + 1 case).

The theorem follows from the commutative diagram for character sheaves in [11, 8.2 and

13.8]. Since Waldspurger proves the Lusztig conjecture for G, the map kn in the diagram

can be replaced by πn ·F (here πn is a linear map on the space spanned by symbols, induced

by π; see [11, 5.1]). We then use (4.1).
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Thus we have an analogue of Asai’s result for unipotent characters in this case, but for

large q. This condition is assumed in order to use Lusztig induction for character sheaves.

Remark. Waldspurger proves, after proving Lusztig’s conjecture, that there is a uniform

labelling of the square-unipotent characters of the Levi subgroups of Oη(2n) such that The-

orem 4.2 holds. This is not apparent at first in the case of Oη(2n), or indeed even in the

case of Sp(2n) since the centralizers of isolated elements can be disconnected groups.

5. ISOLATED BLOCKS OF Sp(2n), SO(2n)

We now discuss the isolated `-blocks of Sp(2n) and SOη(2n), η = ±1, where as before q

and ` are odd. Let G = Sp(2n) or SOη(2n), B an isolated block of G associated with a

conjugacy class (s) ⊂ G∗ such that s2 = 1. This then implies that B ∩ E(G, (s)) 6= ∅ [4,

Th. 9.12]. We note that B ∩ E(G, (s)) is the set of square-unipotent characters in B.

Certain subgroups L,Q of G were considered in [10] in this context. These subgroups

were already introduced in [6] and we describe them now. Let R be the defect group of B.

Subgroups C,C ′, Q were defined in [6, p. 178] as follows: C = CG(R), C ′ is the centralizer in

G of the “base group” of R and Q = CG(z) where z is a suitable element of order ` in the

center of R. We have factorizations

Q = Q+ ×Q0, C = C+ × C0, C
′ = C ′

+ × C0 with

C+ ≤ C ′
+ ≤ Q+, Q0 = C0, and thus C ≤ C ′ ≤ Q.

The subgroup L defined in [10] can be identified with C ′. We set L+ = C ′
+, L0 = C0, so that

we have a factorization L = L+ ×L0. Let e be the order of q2 mod `. Then L+ is a product
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of k tori of order qe − 1 or of order qe + 1, i.e. L+
∼= GL(1, qe)k or U(1, qe)k, and L0 is of

the same type as G, i.e. L0
∼= Sp(2m) or SOη′

(2m) for some m. Here η = η′ or η = (−1)kη′

according as we are in the linear or unitary case in L+. We also have Q+
∼= GL(k, qe) or

U(k, qe).

We have a character λ of L which factorizes as λ = λ+λ0, where λ+ is a linear character

of order dividing 2 of L+ and λ0 is a character of `-defect 0 of L0. We note that λ ∈ E(L, (s)).

The following was proved in [10].

(5.1). Theorem. The square-unipotent characters in B are the constituents of RG
L (λ). The

pair (L, λ) is determined by B up to G-conjugacy.

6. ISOLATED BLOCKS OF O(2n)

We now consider the blocks of Oη(2n) covering the block B of SOη(2n). Let G = Oη(2n),

G0 = SOη(2n), and B as before. We embed L in a subgroup M of G such that M = M+M0,

M+ = L+, L0 ≤M0 and M0
∼= Oη′

(2m), so that (M0 : L0) = (M : L) = 2.

We recall that λ = λ+λ0 where λ0 is a character of L0. Then λ0 is covered by one or two

characters of M0. Let λ̃0 be one such character covering λ0, and set λ̃ = λ+λ̃0, a character

of M covering λ. Since λ+ is a linear character of a product of tori, we can parameterize λ̃

and λ̃0 by the same pair of symbols.

By the parameterization given in (3.1) we can write λ̃ = λ̃0 = π(κ1, κ2) where κ1, κ2 are

symbols. The next lemma describes these symbols in terms of e.

Lemma. κ1, κ2 are e-cores, i.e. no e-hooks can be removed from them.

Proof: It was proved in [10] that λ is e-cuspidal, i.e. that ∗RL
K(λ) = 0 for any e-split Levi
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subgroup K of G with K ≤ L. In our case this means, in particular, that for any subgroup

K ≤ L of the form K = K+K0 where K+ is a product of a torus of order qe − 1 or qe + 1

and K0 is a special orthogonal group, we have ∗RL
K = 0.

We now embed K in a subgroup N of M with N = N+ × N0, N+ = K+, K0 ≤ N0, N0

being an orthogonal group with (N0 : K0) = 2.

We have the following formula which connects the maps ∗RM
N and ∗RL

K [5, Corollaire 2.4

(iii)]:

∗RL
KRes

M
L = ResN

K
∗RM

N . (6.1)

We apply this to λ̃. Then ResM
L (λ̃) is either equal to λ or the sum of λ and another e-cuspidal

character, and so the left hand side is 0. We consider the right hand side.

Now ∗RM
N (λ̃) =

∑
i

aiµ̃i, where the µ̃i are square-unipotent characters ofN . Each µ̃i covers

one or two characters of K. We wish to show ResN
K(

∑
i

aiµ̃i) = 0 implies each ai = 0. If µ̃i

covers 2 characters of K, then no other µ̃j has the same restrictions to K and then ai = 0.

Suppose we have a pair µ̃i, µ̃j which restrict to the same character µ of K. We analyze this

possibility, using the description of the RM
N map and the description of restrictions from N

to K (see (3.3)). Here µ̃i, µ̃j are parameterized by pairs of symbols, at least one of which is

non-degenerate. Suppose µ̃i = π(Λ1,Λ2), µ̃j = π(Λ′
1,Λ

′
2) where Λ1,Λ

′
1 are non-degenerate,

and where Λ1 = (S, T ), Λ′
1 = (T, S) with S 6= T . We have λ̃ = π(κ1, κ2), then κ1 is obtained

either from Λ1 or Λ′
1 by adding an e-hook. We show this is not possible, if Λ1 and Λ′

1 are of

the above form, and similarly for κ2.

Case 1. Suppose an e-hook is added to (S, T ) and (T, S) to get the same symbol κ1 = κ,
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for simplicity. Let S = {x1, x2, . . . , xr}, T = {y1, y2, . . . , yt}. Then we obtain from (S, T )

either (X1, Y1) or (X2, Y2), where

X1 = {x1, x2, . . . , x̂i, . . . xr, xi + e}, Y1 = T

X2 = S, Y2 = {y1, y2, . . . , ŷj, . . . , yt, yt + e}.

From (T, S) we obtain either (X3, Y3) or (X4, X4), where X3 = {y1, y2, . . . , ŷe, . . . , yt, yt + e},

Y3 = S X4 = T , Y4 = {x1, x2, . . . , x̂κ, . . . , xr, xk + a}. Suppose (X1, Y1) = (X3, Y3) or

(X4, Y4). We consider this case, the case of (X2, Y2) being similar. If (X1, Y1) = (X3, Y3)

then S = T , which is not the case. If (X1, Y1) = (X4, Y4) then r = t and X1 = Y4. This gives

{xk, xi + e} = {xi, xk + e}, which is not possible unless k = i. If k = i, X1 = Y4, Y1 = X4,

so κ is degenerate. If κ is degenerate and (S, T ) and (T, S) are obtained from it by deleting

an e-hook, they occur with the same sign (see [2, (3.5)]). Then no cancellation occurs from

µ̃i and µ̃j when restricted to K.

Case 2. Suppose an a-cohook is added to (S, T ) and (T, S) to get the symbol κ. In this

case, from (S, T ) we obtain (X1, Y1) or (X2, X2) where

X1 = {x1, x2, . . . x̂i, . . . , xr}, Y1 = {y1, y2, . . . , yt, xi + e},

X2 = {x1, x2, . . . , xr, yj + e}, Y2 = {y1, y2, . . . , ŷj, . . . , yt}.

From (T, S) we obtain (X3, Y3) or (X4, Y4) where

X3 = {y1, y2, . . . , ŷ`, . . . , yt}, Y3 = {x1, x2, . . . , xr, y` + e}

X4 = {y1, y2, . . . , yt, xk + e}, Y4 = {x1, x2, . . . , x̂k, . . . , xr}.
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Suppose (X1, Y1) = (Y3, Y3) or (X4, Y4). Again, we consider only the case of (X1, Y1) the case

of (X2, Y2) being similar.

If (X1, Y1) = (X3, Y3) then r = t, and {xi, y` + e} = {y`, xi + e}. So xi = y` and S = T .

If (X1, Y1) = (X4, Y4), r − 1 = t+ 1 or t = r − 2.

Suppose i 6= k. Since xk 6= xk + e, from X1 = X4 we get xk ∈ T . Similarly from Y1 = Y4

we get xi ∈ T . But then again from X1 = X4 and Y1 = Y4 we get r − 1 elements from S to

be in T . Since |T | = r − 2 we get a contradiction.

Suppose i = k. Then X1 = Y4 and Y1 = Y4, so we obtain a degenerate symbol. Then we

argue as in Case 1.

Finally we note that by the transitivity of Lusztig induction, it is sufficient to choose K

as above. Then ∗RM
N (λ̃) = 0 for any e-split Levi subgroup K of L and K ≤ N as above.

This shows that if λ̃ = π(κ1, κ2) then κ1, κ2 are e-cores and proves the lemma. �

We return to the blocks of G = Oη(2n) covering the block B of G0 = SOη(2n) and

consider two cases.

Case 1. Suppose λ0 extends to two characters λ̃0, λ̃
′
0 of M0, and so λ extends to λ̃ and

λ̃′ in E(M, (s)). If λ̃ = π(κ1, κ2), λ̃
′ = π(κ′1, κ

′
2), at least one of κ1, κ2 and one of κ′1, κ

′
2 is

non-degenerate. We have CG(R) = C+ ×M0, where R is the defect group of B. Then there

are two blocks of CG(R) covering a block of CG0(R) = C+×L0 which induces to B, and each

of these two blocks is fixed under NG(R). Hence there are two blocks B̃, B̃′ of G covering

B, by Brauer’s First Main Theorem. By (5.1) B ∩ E(G0, (s)) consists of the constituents of
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RG0
L (λ). We use the adjoint of the formula (6.1), applied to G, G0, L and M :

IndG
G0
RG0

L = RG
MInd

M
L , (6.2)

and apply both sides to λ. By (4.2), on the right hand side we get characters in E(G, (s))

of the form π(Λ1,Λ2) where Λi has core κi or κ′i (i = 1, 2). Since degenerate symbols have

degenerate cores, at least one of Λ1,Λ2 is non-degenerate. On the left hand side we get

characters in the blocks B̃, B̃′. Thus we have

(B̃ ∪ B̃′) ∩ E(G, (s)) = Irr(RG
M(λ̃) ∪RG

M(λ̃′)).

In order to prove that the constituents of RG
M(λ̃) and RG

M(λ̃′) lie in different blocks, we recall

the Brauer map dz
G where z ∈ G` (see [4, 5.7]). We choose z ∈ R as a suitable `-element

with Q = CG0(z) as before. Then dz
G0

: C(G0) → C(Q)`′ is defined by (dz
Gf)(y) = f(zy),

y ∈ Q`′ .

We need a generalization of the commuting of the Brauer map and Lusztig induction

(see [4, 21.4]) to the disconnected group case. Let P = CG(z), so that Q ≤ P , P = Q+P0,

Q = Q+Q0 with Q0 = L0, P0 = M0 and Q+
∼= GL(k, qe) or U(k, qe). We have M ≤ P , and

we define dz
G : C(G) → C(P )`′ as above.

Then

∗RP
Md

z
G = dz

M
∗RG

M (6.3)

The proof is similar to that of the connected group case, where the character formula

for the ∗RG
M map (or its analog in that case) is used (see [4, loc. cit]). The more general

character formula has been proved in [5, 2.6].
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Let χ ∈ B̃ ∪ B̃′ be such that 〈χ,RG
M(λ̃)〉 6= 0. If χ = π(Λ1,Λ2) then Λ1,Λ2 are obtained

from κ1, κ2 respectively by adding e-hooks and κ1, κ2 are the e-cores of Λ1,Λ2. We have

P = Q+P0, M = L+M0, and L+ is a product of tori. Then ∗RG
M(χ) is a linear combination

of characters of the form µ× λ̃0 where µ is a character of L+ and µ× λ̃0 is NG(M)-conjugate

to λ̃. Thus ∗RG
M(χ) is a linear combination of characters in blocks of M which induce to a

fixed block of G, which we can take to be B̃. The same then holds for functions in dz
M
∗RG

M(χ),

i.e. the right hand side of (6.3).

We now consider the left hand side of (6.3). By Brauer’s Second Main Theorem dz
G(χ)

consists of functions in C(P ) which are in blocks that induce to the blockB(χ) ofG containing

χ. If ψ is such a function, ∗RP
M(ψ) is a linear combination of functions which are in blocks

inducing to B(χ), since P0 = M0 and L+ plays the same role for Q+ as L does for G0. This

shows that B(χ) = B̃. Thus we have shown the constituents of RG
M(λ̃) all lie in a block B̃.

Similarly the constituents of RG
M(λ̃′) lie in B̃′.

Case 2. Suppose λ0 is covered by a single character λ̃0 of M0, so that IndM0
L0

(λ0) = λ̃0.

Then in fact we have two characters λ0, λ
′
0 of L0 which induce to λ̃0, and then we have two

characters λ = λ+λ0, λ
′ = λ+λ

′
0 of L which are e-cuspidal. However, λ and λ′ are conjugate

by an element x ∈ NG0(L) which acts on L0 like an element of M0\L0. As in Case 1, we

consider CG(R) = C+M0, CG0(R) = C+L0. In this case there is one block of CG(R) covering

two blocks of CG0(R), and thus there is one block B̃ of G covering B. We now apply (6.2)

and argue as in Case 1. It follows that the characters in B̃ ∩ E(G, (s)) are the constituents

of RG
M(λ̃0). If λ̃0 = π(κ1, κ2), these constituents are of the form π(Λ1,Λ2) where Λ1,Λ2 have
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e-cores κ1, κ2 respectively. We also remark that in this case κ1 and κ2 are both degenerate.

7. THE MAIN THEOREM

The square-unipotent characters of G = Sp(2n) in a block B were described in Theorem 5.1.

They are the constituents of RG
L (λ) where λ is e-cuspidal. Thus if λ = π(κ1, κ2) then κ1, κ2

are e-cores, as follows from the description of the RG
L map in (4.2).

We now state our main theorem.

Theorem. Let G = Oη(2n), η = ±1 or Sp(2n), where q is odd and q > 2n. Let B be an

isolated `-block of G, where ` is odd. Let e be the order of q2 mod `. There is a unique pair

(κ1, κ2) ∈ S̃S̃n,even (O(2n)-case) or SS̃n,mix (Sp(2n) case) such that the square-unipotent

characters in B are of the form π(Λ1,Λ2), where κi is the e-core of Λi (i = 1, 2).

The proof of the theorem follows from the results in §6 for the O(2n) case, and from the

above remarks for the Sp(2n) case. The theorem describes, for q > 2n, the square-unipotent

characters in an isolated `-block in combinatorial terms, and is a natural extension of the

results in [6] for the connected center case.
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