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Abstract. An irreducible ordinary character of a finite reductive group
is called quadratic unipotent if it corresponds under Jordan decompo-
sition to a semisimple element s in a dual group such that s2 = 1. We
prove that there is a bijection between, on the one hand the set of qua-
dratic unipotent characters of GL(n, q) or U(n, q) for all n ≥ 0 and on
the other hand, the set of quadratic unipotent characters of Sp(2n, q)
for all n ≥ 0. We then extend this correspondence to `-blocks for certain
` not dividing q.
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1. Introduction

Let G be a connected, reductive algebraic group defined over Fq and G the
finite reductive group of Fq-rational points of G. The irreducible characters
of G are divided into rational Lusztig series E(G, (s)) where (s) is a semisim-
ple conjugacy class in a dual group G∗ of G. Let ` be a prime not dividing q.
Each `-block of G also determines a conjugacy class (s) in G∗, where now s
is an `′-semisimple element. The block is said to be isolated if CG∗(s) is not
contained in a proper Levi subgroup of G∗. If a block is not isolated, the
characters in the block in E(G, (s)) can be obtained by Lusztig induction
from a Levi subgroup of G. Thus it is important to study the isolated blocks
of G. A description of the characters in isolated blocks of classical groups
when ` and q are odd and q is large was given in [16] and [17].

On the other hand, the notion of a perfect isometry between blocks with
abelian defect groups of two finite groups was introduced by M.Broué [2].
This leads to a comparison between an `-block B of a finite group G and
an `-block b of a group H. If there is a perfect isometry between B and b,
certain invariants of the blocks are preserved. Often H is a “local subgroup”
of G, for example the normalizer of a defect group of B. In other situations
G and H are finite groups of the same type, e.g. symmetric groups , general
linear groups or unitary groups. (In fact there is a stronger result, i.e. the
abelian defect group conjecture, for symmetric groups and general linear
groups; see [6].)
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In this paper we study quadratic unipotent characters, i.e. characters in
Lusztig series with s2 = 1, and quadratic unipotent blocks, i.e. blocks
which contain quadratic unipotent characters, of general linear, unitary and
symplectic groups. Here we assume that q and ` are odd. These blocks in-
clude unipotent blocks and are isolated blocks for the symplectic group. We
first show that there is a natural bijection between the quadratic unipotent
characters of GL(n, q) or U(n, q) for all n and the quadratic unipotent char-
acters of symplectic groups Sp(2n, q) for all n. Let e be the order of q mod
`. If B is a quadratic unipotent block of GL(n, q) with e even or of U(n, q)
with e odd or e ≡ 0(mod4) we show that there is a perfect isometry between
B and a quadratic unipotent block b of a symplectic group Sp(2m, q). This
kind of connection between groups of type A and C appears to be new.

Our main tool is the combinatorics of partitions and symbols related to
the blocks of general linear and symplectic groups. In particular our work
is inspired by a paper of Waldspurger [19]; a map which is defined there
between two combinatorial configurations can be used to set up correspon-
dences between blocks as above.

The paper is organized as follows. In Section 2 we describe the construction
and parametrization of quadratic unipotent characters in GL(n, q), U(n, q)
and Sp(2n, q). Our main theorem, Theorem 2.1, gives a bijection between
the sets of quadratic unipotent characters in GL(n, q) or U(n, q) for all n ≥ 0
and the corresponding sets in Sp(2n, q) for all n ≥ 0. In Section 3 we pa-
rameterize quadratic unipotent blocks with e as above for these groups, and
in Section 4 we prove correspondences between blocks of GL(n, q) or U(n, q)
for all n ≥ 0 and blocks of Sp(2n, q) for all n ≥ 0. In Section 5 we construct
perfect isometries between corresponding blocks, in the case of abelian de-
fect groups. Finally in Section 6 we give an alternative interpretation of
the above correspondences. For the groups G = GL(n, q) or G = U(n, q)
and H = Sp(2n, q), we consider groups G(s) and H(s) constructed by En-
guehard as dual groups to the centralizers of a semisimple element s with
s2 = 1 in groups dual to G or H. We then interpret our correspondences as
between unipotent blocks of G(s) and H(s).

Notation: If G is a finite group, Irr(G) is the set of (complex) irreducible
characters of G. The Weyl group of type Bn is denoted by Wn. The
Grothendieck group of an abelian category C is denoted by K0(C).

2. Quadratic Unipotent Characters

If G is a finite reductive group the set Irr(G) is partitioned into geometric
series by Deligne-Lusztig theory, and further into rational series E(G, (s))
where s ∈ G∗ is a semisimple element (see [4], 8.23). For the groups G that
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we study we assume throughout this paper that q is odd and ` is an odd
prime not dividing q.

Definition 2.1. If χ ∈ E(G, (s)) where s satisfies s2 = 1 we say χ is a
quadratic unipotent character.

These characters were called square-unipotent in [17]. In particular we have
the unipotent characters, where s = 1. If G = Sp(2n, q) (resp. SO±(2n, q))
then G∗ = SO(2n + 1, q) (resp. SO±(2n, q)), and if G = GL(n, q) or G =
U(n, q) then G = G∗. Since q is odd, if s2 = 1 where s ∈ G∗ we get quadratic
unipotent characters in E(G, (s)).

Let Gn = GL(n, q) or U(n, q). The unipotent characters of Gn are param-
eterized by partitions of n. More generally, quadratic unipotent characters
of GL(n, q) have been explicitly constructed by Waldspurger [19]. We gen-
eralize his construction also to U(n, q) below.

Let (µ1, µ2) be a pair of partitions where µi is a partition of ni, i = 1, 2,
with n1 + n2 = n. Let L = Gn1 × Gn2 be a Levi subgroup of Gn, where
Gni is a general linear or a unitary group according as Gn = GL(n, q) or
U(n, q) . Let E be the unique linear character of Gn2 of order 2 and let χµi

be the unipotent character of Gni corresponding to the partition µi. Then
the virtual character RGn

L (χµ1 × Eχµ2) obtained by Lusztig induction from
L (which in fact is Harish-Chandra induction when Gn = GL(n, q)) is a
quadratic unipotent character, up to sign. We denote it by χ(µ1,µ2). All
quadratic unipotent characters of Gn are obtained this way, and thus we
have a parametrization of quadratic unipotent characters by pairs (µ1, µ2)
such that |µ1| + |µ2| = n. (We note also that by abuse of notation we use
the finite groups when we write RGn

L .)

An alternative description of the quadratic unipotent characters of Gn =
GL(n, q) or U(n, q) is given as follows. These characters are precisely the
constituents of RGn

L (1×E×χ(κ1,κ2)), where L is a Levi subgroup of the form
T1×T2×Gn0 , T1 (resp. T2) is a product of N1 (resp. N2) tori of order q2−1.
Let 1 be the trivial character(of T1 and E the product of the characters of
order 2 on each component of T2. The character χ(κ1,κ2) is a 2-cuspidal char-
acter of Gn0 , i.e. κ1 and κ2 are 2-cores. We note that in this case, by the
work of Lusztig [13] the RGn

L map is Harish-Chandra induction for U(n, q).
The endomorphism algebra of the induced representation is isomorphic to a
Hecke algebra of type WN1 ×WN2 .

Let Hn = Sp(2n, q), q odd. We have a similar description of quadratic
unipotent characters of Hn, as given by Lusztig [13] and Waldspurger ([18],
4.9). The characters are constituents of RHn

K (1 × E × χ), where K is a
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Levi subgroup of the form T1 × T2 × Hn0 , T1 (resp. T2) is a product of
N1 (resp. N2) tori of order q − 1. Let 1 be the trivial character of T1

and E the product of the characters of order 2 on each component of T2.
The character χ is a cuspidal quadratic unipotent character of Hn0 and
the RHn

K map is Harish-Chandra induction. The endomorphism algebra of
the induced representation is again isomorphic to a Hecke algebra of type
WN1 ×WN2 .

We now describe the combinatorics of symbols needed to parameterize the
quadratic unipotent characters of Hn. By the work of Lusztig [13] the unipo-
tent characters of classical groups are parameterized by equivalence classes
of symbols. We refer to ([3], p.465), ([1], p. 48) for a description of the sym-
bols associated with unipotent characters of Sp(2n, q), including definitions
of the equivalence relations on symbols and the rank and defect of a symbol.

We denote a symbol by Λ = (S, T ) where S, T ⊆ N. If Λ is unordered, it is
regarded as the same as (T, S) and also the same as the symbol obtained by
a shift operation from itself ( [3], p. 375). The defect of Λ is |S| − |T |. We
also need to consider ordered symbols to parameterize unipotent characters
of O±(2n, q), which were described by Waldspurger.

We then have:

• The unipotent characters of Sp(2n, q) are in bijection with unordered
symbols of rank n and odd defect.

• The unipotent characters of O+(2n, q) are in bijection with ordered
symbols of rank n and defect ≡ 0 (mod 4)

• The unipotent characters of O−(2n, q) are in bijection with ordered
symbols of rank n and defect ≡ 2 (mod 4)

• The irreducible characters of Wn are in bijection with unordered
symbols of rank n and defect 1.

The operations of “adding an a-hook” to and “deleting an a-hook” from
a partition, and the concept of an “a-core” of a partition are well-known.
Similarly we have operations of “adding an a-hook or an a-cohook” and
“deleting an a-hook or a-cohook” to a symbol Λ. They can be described as
follows ( [15], p.-226). Let Λ = (S, T ). We say a symbol Λ′ is obtained from
Λ by adding an a-hook if it is obtained by deleting a member x of S (or T )
and inserting x+ a in S (or T ). We say Λ′ is obtained from Λ by adding an
a-cohook if it is obtained from Λ by deleting a member x of S (or T ) and
inserting x+ a in T (or S).

We follow the notation of [18] below. We define a map σ on ordered symbols
by σ(S, T ) = (T, S). Let S̃n,d be the set of ordered symbols of rank n and
defect d, and let Sn,d = S̃n,d ∪ S̃n,−d, modulo the relation Λ ∼ σ(Λ).
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Let

Sn,odd =
⋃
d∈N

d odd

Sn,d, S̃n, even =
⋃
d∈Z

d even

S̃n,d,

SS̃n, mix =
⋃

n1+n2=n

(Sn1, odd × S̃n2, even).

Remark. We have taken the liberty of replacing “pair” by “even” and
“imp” by “odd” in [18].

By the work of Lusztig [13] and Waldspurger [18] we have a parametriza-
tion of the quadratic unipotent characters of Hn by SS̃n, mix which general-
izes that of the unipotent characters, given above. This will be clarified in
Lemma 2.2 below.

We note that if ρ ∈ Irr(Wn) there is a symbol of defect 1 corresponding
to ρ ([3], p.375). By abuse of notation we will sometimes refer to ”the
core (or cocore) of ρ”, to mean the core (or cocore) of the symbol. The
characters in Irr(Wn) are also parameterized by pairs of partitions (λ1, λ2)
with λ1 + λ2 = n, and this will be used in the lemma below.

We now give the parametrization of the quadratic unipotent characters of
Gn and Hn which we will use in our description of blocks. We remark that
the parametrization by 4-tuples in the case of Gn, rather than by pairs of
partitions is crucial for our results.

Lemma 2.1. The quadratic unipotent characters of Gn can be parameterized
by 4-tuples (m1,m2, ρ1, ρ2) such that

m1(m1 + 1)/2 +m2(m2 + 1)/2 + 2N1 + 2N2 = n,

where m1,m2 ∈ N and ρi ∈ Irr(WNi), i = 1, 2.

Proof. The quadratic unipotent characters of Gn are parameterized by pairs
of partitions (µ1, µ2) such that |µ1| + |µ2| = n. A combinatorial proof that
we may parameterize these characters of Gn by 4-tuples (m1,m2, ρ1, ρ2) as
above is given in ([19], p.361). The characters Irr(WNi) are also parameter-
ized by pairs of partitions, and so we can regard each ρi as corresponding
to a pair of partitions. Then χ(µ1,µ2) is parameterized by (m1,m2, ρ1, ρ2)
where the 2-core of µi is {mi,mi−1, . . . , 2, 1} and the 2-quotient of µi is
ρi ∈ Irr(WNi), i = 1, 2. Here ρi corresponds to a pair of partitions, as
mentioned above.

We note that the character parameterized by (m1,m2,−,−) is 2-cuspidal for
GL(n, q). In the case of U(n, q) the description given above also shows that
we can regard this parametrization as coming from Harish-Chandra induc-
tion from a suitable Levi subgroup L, with (m1,m2,−,−) the parameters
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for a cuspidal quadratic unipotent character of a possibly smaller unitary
group U(n0, q) and with (ρ1, ρ2) the character of a product of two Hecke
algebras of type B corresponding to WN1 ×WN2 . This gives another proof
of the parametrization by the 4-tuples as above for U(n, q), and hence for
GL(n, q). �

Remark. For an explanation of the connection between the two parameter-
izations of unipotent characters of U(n, q) see also ([12], p.224).

Lemma 2.2. The quadratic unipotent characters of Hn can be parameterized
by pairs of symbols (Λ1,Λ2) and by 4-tuples (h1, h2, ρ1, ρ2) such that h1(h1 +
1) + h2

2 +N1 +N2 = n, where h1 ∈ N, h2 ∈ Z and ρi ∈ Irr WNi, i = 1, 2

Proof. As in the case of U(n, q) this is done by Harish-Chandra induc-
tion of cuspidal quadratic-unipotent characters from a suitable Levi sub-
group K ([18], 4.9-4.11). The endomorphism algebra of the induced rep-
resentation is again isomorphic to a Hecke algebra of type WN1 × WN2 .
Hence the set of quadratic unipotent characters of Hn is parameterized by
4-tuples (h1, h2, ρ1, ρ2), where the cuspidal character is parameterized by
(h1, h2,−,−). Then ([18], 2.21, 4.10) the pair (h1, ρ1) corresponds to a
symbol Λ1 ∈ Sh1+h2

1+N1,odd and the pair (h2, ρ2) corresponds to a symbol

Λ2 ∈ S̃h2
2+N2,even. Thus there is a pair (Λ1,Λ2) ∈ SS̃n,mix corresponding to

the 4-tuple (h1, h2, ρ1, ρ2), and there is a bijection of SS̃n,mix with the set
of quadratic unipotent characters of Hn.

We note here the connection between the symbols Λ1,Λ2 and the symbols
corresponding to ρ1, ρ2. Suppose the symbol corresponding to ρ1 is (S, T )
where |S| = |T |+ 1. Then the symbol corresponding to Λ1 is (S′, T ) where,
if 2h1 + 1 = d, S′ = {[0, d− 2] ∪ (S + d− 1)} ([13], 3.2). The formula for ρ2

and Λ2 is similar. �

The quadratic unipotent character parameterized by (Λ1,Λ2) is denoted by
χ(Λ1,Λ2).

Remark. We note that since (Λ1,Λ2) ∈ SS̃n,mix the character χ(Λ1,Λ2) is in
E(Hn, (s)) where the number of eigenvalues of s equal to 1 (resp. −1) in
the natural representation of the dual group SO(2n + 1) is 2 rank(Λ1) + 1
(resp. 2 rank(Λ2)). The pair (Λ1,Λ2) parameterizes a unipotent character
of the centralizer of s in a group dual to Hn, and thus we have the Jordan
decomposition of χ(Λ1,Λ2). This will be used in Section 5.

The following lemma is a first step towards connecting the quadratic unipo-
tent characters of the groups Gn and the groups Hn.

Lemma 2.3. ([19], p.362). There is a bijection between pairs (m1,m2) such
that m1(m1 +1)/2+m2(m2 +1)/2 = n and pairs (h1, h2) such that h1(h1 +
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1) + h2
2 = n. This bijection is defined by m1 = sup(h1 + h2,−h1 − h2 − 1)

and m2 = sup(h1 − h2, h2 − h1 − 1).

Remark. Note that if h2 is replaced by −h2, m1 and m2 are interchanged
in the above bijection.

This bijection then leads to the following result, which is crucial to us. The
proof is a straightforward extension of the above lemma.

Theorem 2.1. The map (m1,m2, ρ1, ρ2) → (h1, h2, ρ1, ρ2), ρi ∈ Irr WNi,
i = 1, 2 induces a bijection between the set of quadratic unipotent characters
of (Gn, n ≥ 0), and the set of quadratic unipotent characters of (Hn, n ≥ 0).
Under this bijection the character corresponding to (m1,m2, ρ1, ρ2) of Gn

maps to the character corresponding to (h1, h2, ρ1, ρ2) of Hm where m1(m1+
1)/2 +m2(m2 + 1)/2 + 2N1 + 2N2 = n and h1(h1 + 1) + h2

2 +N1 +N2 = m.

Example. The group Sp(4, q) has 23 quadratic unipotent characters (and
only 6 unipotent characters). Of these, 14 characters are in bijection with
quadratic unipotent characters of GL(4, q), 8 with those of GL(3, q) and 1
with that of GL(2, q). The latter is the unipotent cuspidal character θ10,
which is in bijection with the quadratic unipotent (not unipotent) 2-cuspidal
character of GL(2, q) parameterized by the pair of partitions (1, 1) or by the
4-tuple (1, 1,−,−). Here m1 = m2 = 1, h1 = 1, h2 = N1 = N2 = 0.

Example. The group GL(4, q) has 20 quadratic unipotent characters (and
only 5 unipotent characters). Of these, 14 characters are in bijection with
quadratic unipotent characters of Sp(4, q), 4 with those of Sp(6, q) and 2
with those of Sp(8, q). The latter are cuspidal quadratic unipotent char-
acters of Sp(8, q) corresponding to cuspidal quadratic unipotent characters
of O+(8, q) under Jordan decomposition. They are in bijection with the
quadratic unipotent 2-cuspidal characters of GL(4, q) parameterized by the
pair of partitions (21, 1). Here m1 = 2,m2 = 1, h2 = 2, h1 = N1 = N2 = 0,
or (1, 21) with m1 = 1,m2 = 2, h2 = −2, h1 = N1 = N2 = 0.

Theorem 2.1 can be restated as follows. Let Ln (resp. L′
n) be the category

of quadratic unipotent characters of Gn (resp. Hn).

Theorem 2.2. There is an isomorphism (isometry) between the groups
⊕n≥0 K0(Ln) and ⊕n≥0 K0(L′

n) given by mapping the character parame-
terized by (m1,m2, ρ1, ρ2) to the character parameterized by (h1, h2, ρ1, ρ2),
ρi ∈ Irr WNi, i = 1, 2.

3. Quadratic unipotent blocks

The ` - blocks of Gn and of the conformal symplectic group CSp(2n, q) were
classified in [10], [11]. We define a quadratic unipotent block of Gn or Hn
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to be one which contains quadratic unipotent characters. As a special case
we have the unipotent blocks, which have been studied by many authors
(see e.g. [4]). The quadratic unipotent ` - blocks of Hn were classified in
terms of cuspidal pairs in [16]. A description of the characters in a quadratic
unipotent block of Hn was given in [17] if q > 2n .

The following theorem describes these results. Here and in the rest of the
paper, e is the order of q mod ` and f the order of q2 mod `. The character E
of the torus T2 is the product of the characters of order 2 on each component
of T2.

Theorem 3.1. (i) [10] Let ` divide qf +1 if Gn = GL(n, q) and let ` divide
qf + 1, f even, or qf − 1, f odd, if Gn = U(n, q). Let B be a quadratic
unipotent `-block of Gn. Then B corresponds to a pair (λ1, λ2) of partitions
such that |λ1| + |λ2| = n′ and such that λ1 and λ2 are 2f-cores, i.e. no
2f-hooks can be removed from them. The quadratic unipotent characters in
B are of the form χ(µ1,µ2) where λi is the 2f -core of µi (i = 1, 2). These
characters are precisely the constituents of RGn

L (1 × E × χ(λ1,λ2)), where L
is a Levi subgroup of the form T1 × T2 ×Gn′, T1 (resp. T2) is a product of
M1 (resp. M2) tori of order q2f − 1, and 1 (resp. E) is the trivial character
(resp. character of order 2) of T1 (resp. T2). The character χ(λ1,λ2)) is in
a block of defect 0 of Gn′.

(ii) [17] Let q > 2m. Let b be a quadratic unipotent ` - block, i.e. an
isolated block of Hm and let ` divide qf − 1, f odd. Then b corresponds to a
pair of symbols (π1, π2) where the πi are f -cores . The quadratic unipotent
characters in b are of the form χ(Λ1,Λ2) where πi is the f -core of Λi (i = 1, 2).
These characters are precisely the constituents of RHm

K (1×E×χ(π1,π2)), where
K is a Levi subgroup of the form T1 × T2 ×Hm′, T1 (resp. T2) is a product
of M1 (resp. M2) tori of order qf −1 and 1 (resp. E) is the trivial character
(resp. character of order 2) of T1 (resp. T2). The character χ(π1,π2) is in a
block of defect 0 of Hm′.

(iii) [17] Let q > 2m. Let b be a quadratic unipotent ` - block, i.e. an isolated
block of Hm and let ` divide qf +1. Then b corresponds to a pair of symbols
(π1, π2) where the πi are f -cocores. The quadratic unipotent characters in
b are of the form χ(Λ1,Λ2) where πi is the f-cocore of Λi (i = 1, 2). These
characters are precisely the constituents of RHm

K (1 × E × χ(π1,π2)), where K
is a Levi subgroup of the form T1 × T2 ×Hm′, T1 (resp. T2) is a product of
M1 (resp. M2) tori of order qf + 1 and 1 (resp. E) is the trivial character
(resp. character of order 2) of T1 (resp. T2). The character χ(π1,π2) is in a
block of defect 0 of Hm′. �
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The following combinatorial lemma due to Olsson ([15], p.235) and to En-
guehard ([9],5.7 ) will be used to connect blocks of types (ii) and (iii) in the
above theorem.

Lemma 3.1. Given a symbol Λ of rank n and a positive integer e one can
define a symbol Λ̂, called the e-twisting of Λ in ([15],p.235) such that there
is a bijection between e-cohooks in Λ and e-hooks in Λ̂. In particular if Λ̂ is
an e-core, i.e. has no e-hooks, then Λ is an e-cocore, i.e. has no e-cohooks.

Corollary 3.1. The operation of e-twisting is an involution on the set of
quadratic unipotent characters of Sp(2n, q).

Theorem 3.2. If Gn = GL(n, q), let e = 2f be the order of q mod `,
so that ` divides qf + 1. (We exclude the case where e is odd.) If Gn =
U(n, q) let again e be the order of q mod ` and f the order of q2 mod `.
Consider the two cases: (i) e = f is odd, ` divides q2f − 1 and qf − 1,
or (ii) e = 2f where f is even, i.e. e ≡ 0 (mod 4) and ` divides qf + 1.
The case e ≡ 2 (mod 4) is excluded. Then the quadratic unipotent blocks
of Gn are parameterized by 6-tuples (m1,m2, σ1, σ2,M1,M2), where σi ∈
Irr WN ′

i
, i = 1, 2 with fM1 +N ′

1 = N1, fM2 +N ′
2 = N2, m1(m1 + 1)/2 +

m2(m2 + 1)/2 + 2N1 + 2N2 = n. The quadratic unipotent characters in
a block parameterized by (m1,m2, σ1, σ2,M1,M2) are then parameterized by
4-tuples (m1,m2, ρ1, ρ2) such that (ρ1, ρ2) have (σ1, σ2) as f-cores.

Proof. We use Theorem 3.1 and the construction of quadratic unipotent
characters. Let B be a quadratic unipotent `-block of Gn. We have the
following configurations, by our choice of e. The block B corresponds to an
e-split Levi subgroup of Gn which is a product of M1 + M2 tori of order
q2f − 1 and Gn′ . Then Gn′ has a 2-split Levi subgroup which is a product
of N1

′ +N2
′ tori of order q2 − 1 and Gn0 , and finally Gn has a 2-split Levi

subgroup which is a product of N1 +N2 tori of order q2 − 1 and Gn0 .

Then B corresponds to a pair (λ1, λ2) of 2f -cores which parameterize a
block of defect 0 of Gn′ . Suppose the 2-core of (λ1, λ2) is (κ1, κ2). Then
(κ1, κ2) is parameterized by a 4-tuple (m1,m2,−,−), where κi is the par-
tition (mi,mi − 1, . . . 1) for i = 1, 2. Then the 2f -core (λ1, λ2) is param-
eterized by a 4-tuple (m1,m2, σ1, σ2), where σi ∈ Irr WN ′

i
, i = 1, 2, and

m1(m1 + 1)/2 +m2(m2 + 1)/2 + 2N ′
1 + 2N ′

2 = n′. Since B is parameterized
by the pair of the e-split Levi subgroup and the character (λ1, λ2), we get
the parametrization of B by the sextuple (m1,m2, σ1, σ2,M1,M2), where
σi ∈ Irr WN ′

i
, i = 1, 2.

Let χ(µ1,µ2) ∈ B. Now λ1 and λ2 are obtained from µ1 and µ2 respectively
by removing 2f -hooks. Removing a 2f -hook can be achieved by removing f
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2-hooks. Thus all the (µ1, µ2) parameterizing the quadratic unipotent char-
acters in B have the same 2-core (κ1, κ2). Then all the 4-tuples parameter-
izing the quadratic unipotent characters in B have the form (m1,m2, ρ1, ρ2)
such that m1(m1+1)/2+m2(m2+1)/2+2N1+2N2 = n, where ρi ∈ IrrWNi ,
i = 1, 2 . In other words the pair (m1,m2) is fixed for all the characters. We
then note (see Lemma 2.1) that (σ1, σ2) are the 2-quotients of the partitions
(λ1, λ2), and hence σ1 and σ2 are f -cores. A count of the number of 2-hooks
removed from a pair of partitions to reach the 2-core gives

fM1 +N ′
1 = N1, fM2 +N ′

2 = N2.

This gives the result. �

The proof of the next proposition for the groups Hm and the case of `
dividing qf − 1 is similar to the above.

Theorem 3.3. Let q > 2m. Let ` divide qf − 1, f odd. The quadratic
unipotent blocks of Hm are parameterized by 6-tuples (h1, h2, σ1, σ2,M1,M2),
where σi ∈ Irr WN ′

i
, i = 1, 2 with fM1 + N ′

1 = N1, fM2 + N ′
2 = N2,

h1(h1 + 1) + h2
2 +N1 +N2 = m. Here the symbols corresponding to σ1 and

σ2 are f-cores. The quadratic unipotent characters in b are parameterized
by 4-tuples of the form (h1, h2, ρ1, ρ2) where (ρ1, ρ2) have (σ1, σ2) as f-cores.

Proof. Let b be a quadratic unipotent `-block of Hm corresponding to a
pair of symbols (π1, π2) which are f -cores, as in Theorem 3.1. The 1-core
of (π1, π2) is parameterized by (h1, h2,−,−) for some h1, h2 and (π1, π2) is
parameterized by (h1, h2, σ1, σ2), where σi ∈ Irr WN ′

i
, i = 1, 2. To show

that σ1 is an f -core, we can assume π1 = (S′, T ), and that the symbol
corresponding to σ1 is (S, T ) as in Lemma 2.2. Using the description given
there of the connection between S and S′ it is easy to see that removing an
f -hook from (S′, T ) is equivalent to removing an f -hook from (S, T ). Thus
(S′, T ) is an f -core if and only if (S, T ) is an f -core.

Let χ(Λ1,Λ2) ∈ b. Now π1 and π2 are obtained from Λ1 and Λ2 respectively
by removing f -hooks . Removing an f -hook can be achieved by removing
f 1-hooks. Thus all the (Λ1,Λ2) parameterizing the quadratic unipotent
characters in b have the same 1-core which is the 1-core of (π1, π2).

Furthermore all the 4-tuples parameterizing the quadratic unipotent charac-
ters in b have the form (h1, h2, ρ1, ρ2) such that h1(h1+1)+h2

2+N1+N2 = m,
where ρi ∈ Irr WNi , i = 1, 2 . In other words the pair (h1, h2) is fixed for
all the characters. As before we have fM1 + N ′

1 = N1, fM2 + N ′
2 = N2

where M1, M2 are as in Theorem 3.1 (ii). If χ(Λ1,Λ2) is parameterized by
(h1, h2, ρ1, ρ2) then the above arguments on removing f -hooks applied to
(Λ1,Λ2) and the symbols corresponding to (ρ1, ρ2) show that since (Λ1,Λ2)
have (π1, π2) as f -cores, (ρ1, ρ2) have (σ1, σ2) as f -cores. �
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Remark . The above arguments show that the pair (ρ1, ρ2) can be regarded
as the 1-quotient of the pair (Λ1,Λ2). This is a special case of the concept
of an e-quotient of a symbol in ([15], Lemma 9).

The case ofHm where ` divides qf+1 will be considered after proving Lemma
4.2 below, since in that case we have to use cohooks instead of hooks.

Remark . The 4-tuple (m1,m2, σ1, σ2) (resp. (h1, h2, σ1, σ2)) can be re-
garded as the “core” of the block B (resp. b), and the pair (M1,M2) can be
regarded as the “weight” of the block.

4. Correspondences between blocks

The parametrization of blocks described in the last section leads to the main
theorems of this section. The block correspondences that we derive in Theo-
rems 4.1,4.2 will be between a blockB parameterized by (m1,m2, σ1, σ2,M1,M2)
and a block b parameterized by (h1, h2, σ1, σ2,M1,M2). Suppose fM1+N ′

1 =
N1, fM2 + N ′

2 = N2. If n and m are given by m1(m1 + 1)/2 + m2(m2 +
1)/2 + 2N1 + 2N2 = n and h1(h1 + 1) + h2

2 + N1 + N2 = m then B, b
are blocks of Gn, Hm respectively. For such a fixed pair (n,m) we assume
q > 2m when we use the combinatorial description of characters in blocks
of Sp(2m, q) proved in [17].

Theorem 4.1. Let `|(qf − 1), f odd. Let B be a quadratic unipotent
block of U(n, q) parameterized by (m1,m2, σ1, σ2,M1,M2), where σ1 and σ2

are f -cores. Let (m1,m2) correspond under Waldspurger’s map to the pair
(h1, h2), and let b be the block of Sp(2m, q) parameterized by (h1, h2, σ1, σ2,M1,M2).
Here n and m are as above. Then B and b correspond in the sense that (i)
their defect groups are isomorphic, and (ii) assuming q > 2m, there is a
natural bijection between the quadratic unipotent characters in B and those
in b.

Proof. Consider the blocks B and b as above. We use Theorems 3.2 and 3.3.
Suppose a character of U(n, q) in B is parameterized by (m1,m2, ρ1, ρ2).
Then the pair (ρ1, ρ2) has f -core (σ1, σ2). Then the character of Sp(2m, q)
parameterized by (h1, h2, ρ1, ρ2) is in b. Thus the correspondence between
the quadratic unipotent characters in B and those in b is given by associating
the character in B with parameters (m1,m2, ρ1, ρ2) with the character in b
with parameters (h1, h2, ρ1, ρ2). This shows (ii).

For (i), let L be the Levi subgroup of the form T1 ×T2 ×Gn′ as in Theorem
3.1 (i). Then a defect group of B is isomorphic to an `-Sylow subgroup
of (T1 o (Z2f o SM1)) × (T2 o (Z2f o SM2)) (see [4], Theorem 22.9) for the
unipotent block case, which extends to this case). By considering the Levi
subgroup K of Sp(2m, q) again as in Theorem 3.1, and noting that ` divides
qf − 1, we see that the defect group of b is isomorphic to the defect group
of B. �
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Corollary 4.1. The map B → b as above gives a bijection from the set {`−
blocks of U(n, q), `|(qf−1)(f odd), n ≥ 0} onto the set {`−blocks of Sp(2m, q), `|(qf−
1)(f odd), m ≥ 0}. The blocks B and b correspond as in (i) and (ii) of the
theorem.

In order to consider the case of GL(n, q) we prove the following lemma.

Lemma 4.1. There is a natural bijection between

{`−blocks of U(n, q), `|(qf−1)(f odd)} and {`−blocks of GL(n, q), `|(qf+
1) (f odd)}, by Ennola Duality.

Proof. The sets of quadratic unipotent characters of GL(n, q) and U(n, q)
are in bijection via Ennola Duality, such that the characters in both groups
parameterized by the same pair (µ1, µ2) correspond. (See e.g. ([1], 3.3)
for the unipotent case, which extends to our case.) By [10] both the `-
blocks of GL(n, q), `|(qf + 1) (f odd) and the `- blocks of U(n, q), `|(qf −
1) (f odd) are classified by 2f -cores. Thus in both cases the blocks are
parameterized by 6-tuples (m1,m2, σ1, σ2,M1,M2). The map which makes
the blocks of GL(n, q) and U(n, q) which are parameterized by the same
6-tuple correspond is then a bijection, which also induces a bijection of the
quadratic unipotent characters in the blocks. �

Lemma 4.2. There is a natural bijection between ` - blocks of Hn where
`|(qf − 1), and ` - blocks where `|(qf + 1), by f-twisting. The quadratic
unipotent characters in corresponding blocks also correspond by f -twisting.
Here f is odd.

Proof. By Lemma 3.1, if a symbol Λ is an f -core, then Λ̂ is an f -cocore.
The ` - blocks of Hn where ` divides qf − 1 (resp. qf + 1) are classified by
f -cores (resp. f -cocores). If b is an `-block where ` divides qf − 1 and b
corresponds to a pair (π1, π2) of f -cores, let b∗ be the `-block where ` divides
qf + 1 which corresponds to the pair (π̂1, π̂2) of f -cocores.

The f -core (resp. cocore) of a symbol Λ is the f -twist of the f -cocore (resp.
core) of the symbol Λ̂ ([15], p.235). Thus there is a bijection between the
quadratic unipotent characters in the blocks b and b∗, again by f -twisting.

�

We then get the following theorem, analogous to Theorem 4.1, by Ennola
duality and f -twisting.

Theorem 4.2. Let ` divide qf + 1, f odd. Let B be a quadratic unipotent
block of GL(n, q) and let B∗ be the block of U(n, q) corresponding to B by
Lemma 4.1. Then consider the block b∗ of Sp(2m, q) corresponding to B∗.
By Lemma 4.2 b∗ corresponds, by f -twisting to an `-block b of Sp(2m, q)
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where ` divides qf + 1, f odd. Then B and b correspond in the sense that
(i) their defect groups are isomorphic, and (ii) assuming q > 2m, there is a
natural bijection between the quadratic unipotent characters in B and those
in b.

We now have the following corollary.

Corollary 4.2. The above map then gives a bijection from the set {` −
blocks of GL(n, q), `|(qf+1) (f odd), n ≥ 0} onto the set {`−blocks of Sp(2m, q), `|(qf+
1) (f odd),m ≥ 0}, satisfying (i) and (ii) of the theorem.

We now consider the case where ` divides qf + 1. where e = 2f , f even, so
that e ≡ 0 (mod 4).

Theorem 4.3. Let ` divide qf + 1, f even. Let B be a quadratic unipotent
block of Gn parameterized by (m1,m2, σ1, σ2,M1,M2). Then there is a block
b of Hm such that B and b correspond in the sense that (i) their defect
groups are isomorphic, and (ii) assuming q > 2m, there is a natural bijection
between the quadratic unipotent characters in B and those in b.

Proof. The quadratic unipotent characters in B are constituents of RGn
L (1×

E ×χ(λ1,λ2)), where L is a Levi subgroup of the form T1×T2×Gn′ , T1 (resp.
T2) is a product of M1 (resp. M2) tori of order q2f − 1, and 1 (resp. E)
is the trivial character (resp. character of order 2) of T1 (resp. T2). Here
the pair of partitions (λ1, λ2) corresponds to (m1,m2, σ1, σ2) where (σ1, σ2)
are f -cores, and we have a character χ(π1,π2) of a group Hm′ corresponding
to (h1, h2, σ1, σ2). By the proof of Theorem 3.3, (π1, π2) are f -cores since
(σ1, σ2) are f -cores. The character obtained from χ(π1,π2) by f -twisting is
of the form χ(τ1,τ2), where the symbols τ1, τ2 are f -cocores. Let b be the
`-block of a group Hm corresponding to this character and M1,M2, i.e. the
block b such that the quadratic unipotent characters in it are constituents
of RHm

K (1× E × χ(τ1,τ2)), where K is a Levi subgroup of the form T1 × T2 ×
Hm′ , T1 (resp. T2) is a product of M1 (resp. M2) tori of order qf + 1,
and 1 (resp. E) is the trivial character (resp. character of order 2) of T1

(resp. T2) (Theorem 3.1(iii)). Then B and b correspond as required: For
(i) the proof is as in Theorem 4.1. For (ii) we note that there is a bijection
by f -twisting between the quadratic unipotent constituents of RHm

K (1 ×
E × χ(τ1,τ2)) and those of RHm

K (1 × E × χ(π1,π2) ([15], p.235). However,
the quadratic unipotent constituents of the latter are in bijection with the
quadratic unipotent characters in B, since (σ1, σ2) are the 2-quotients of
(λ1, λ2). This proves the result. �

Summarizing, we have bijections between the following sets; we list them in
the order in which they were constructed.
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(i) {`−blocks of U(n, q), `|(qf−1) (f odd), n ≥ 0} ↔ {`−blocks of Sp(2m, q), `|(qf−
1) (f odd),m ≥ 0}.

(ii) {`−blocks of GL(n, q), `|(qf+1) (f odd), n ≥ 0} ↔ {`−blocks of Sp(2m, q), `|(qf+
1) (f odd),m ≥ 0}.

(iii) {`−blocks of U(n, q), `|(qf+1) (f even), n ≥ 0} ↔ {`−blocks of Sp(2m, q), `|(qf+
1) (f even),m ≥ 0}.

(iv) {`−blocks of GL(n, q), `|(qf+1) (f even), n ≥ 0} ↔ {`−blocks of Sp(2m, q), `|(qf+
1) (f even),m ≥ 0}.

5. Perfect Isometries

In this section we assume that all the blocks considered have abelian defect
groups. This implies that ` does not divide the order of the Weyl group,
and thus that ` is large in the sense of ([1], 5.1).

We generalize the result on perfect isometries between unipotent blocks of
[1] to quadratic unipotent blocks. We use the classification of blocks by e-
cuspidal pairs and the description of characters in the blocks ([4], 22.9; [16],
3.9, [17], Section 7).

We first describe the defect groups and their normalizers of the blocks under
consideration ([1], pp.46,50).

Case 1. G = Gn. Let B be a block of G as in Section 3, so that ` divides
q2f − 1. Let L be a Levi subgroup of the form T1 ×T2 ×Gr, where T1 (resp.
T2) is a product of M1 (resp. M2) tori of order q2f − 1. The defect group of
B is then a Sylow `-subgroup of T1 × T2.

Case 2. G = Hn. Let b be a block of G as in Section 3, so that ` divides
qf − 1 or qf +1 . Let L be a Levi subgroup of the form T1 ×T2 ×Hr, where
T1 (resp. T2) is a product of M1 (resp. M2) tori of order qf − 1 or qf + 1.
The defect group of b is then a Sylow `-subgroup of T1 × T2.

We note that the defect groups of two blocks B and b which correspond as
in Section 4 are isomorphic.

In each case, we have WG(L) = NG(L)/L ∼= Z2f o SM1+M2 , where SN is the
symmetric group of degree N . Now suppose λ is a quadratic unipotent 2f -
cuspidal character (resp. f -cuspidal character) of Gr (resp. Hr). Then we
have in each case WG(L, λ) = NG(L, λ)/L = W1×W2 where W1

∼= Z2f oSM1

and W2
∼= Z2f o SM2 .

The results of Broué, Malle and Michel ([1], 3.2, 5.15) can be modified as
follows.
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Theorem 5.1. Let G = Gn or Hn and L a Levi subgroup of G as in Case 1
or Case 2 above. Let λ be a quadratic unipotent character of L of the form
1 × E × χ, where 1 is a trivial character (resp. character of order 2) of T1

(resp. T2), and χ is in a block of defect 0 of Gr or Hr, so that (L, λ) is an
e-cuspidal pair in Case 1 and an f-cuspidal pair in Case 2.

Let M be an 2f -split Levi subgroup containing L in Case 1 or an f-
split or 2f-split Levi subgroup containing L in Case 2. We then have an
isometry IM

(L,λ) between the Z-spans of the set Irr(WM (L, λ)) and of the set

of constituents of RM
L (λ), such that RG

M . IM
(L,λ) = IG

(L,λ) . IndWG(L,λ)
WM (L,λ).

Proof. If G = Gn (resp. Hn) the quadratic unipotent characters are of
the form χ(µ1,µ2) (resp. χ(Λ1,Λ2)) where µ1, µ2 are partitions and Λ1,Λ2 are
symbols. In this case the characters are in a fixed Lusztig series and thus
in bijection with the unipotent characters of the centralizer of a semisimple
element. Thus we have fixed integers n1, n2 such that n1 + n2 = n, and
µ1, µ2 are partitions of n1, n2 respectively and Λ1,Λ2 are symbols of rank
n1, n2 respectively.

In the case of the unipotent characters of Gn and Hn the group M has been
described in ([1]. p.46, p.49-52). From our choice of f the group M in our
case can be assumed to have the following form. In the case of Gn, M =
GL(b, q2f ) × Gk for some b, k, and in the case of Hn, M = GL(b, qf ) ×Hk

or M = U(b, qf ) ×Hk for some b, k. We have b ≤M1 +M2.

Suppose L is embedded inM as follows. Let T1 = T1,1×T1,2, T2 = T2,1×T2,2.

Case 1. Let T1,1 ×T2,1 ⊆ GL(b, qf ), T1,2 ×T2,2 ×Gr ⊆ Gk, where T1,1 (resp.
T2,1) is isomorphic to b1 (resp. b2) copies of tori of orders q2f − 1.

Case 2. Let T1,1×T2,1 ⊆ GL(b, qf ) or U(b, qf ), T1,2×T2,2×Hr ⊆ Hk, where
T1,1 (resp. T2,1) is isomorphic to b1 (resp. b2) copies of tori of orders qf − 1
or qf + 1.

Recall that WG(L, λ) = NG(L, λ)/L = W1 ×W2
∼= Z2f o SM1 × Z2f o SM2 .

Since the character λ takes the value 1 on T1 and E on T2, we see that for both
Gn and Hn we get WM (L, λ) = W1

′×W2
′ where W1

′ ∼= Sb1 × (Z2f ) oSM1−b1

and W2
′ ∼= Sb2 × (Z2f ) o SM2−b2 .

Now we consider Lusztig induction RM
L (λ) where λ is of the form χ(λ1,λ2),

where (λ1, λ2) is a pair of partitions or symbols. Using results of Wald-
spurger [18] it was shown in ([17], 4.2) for the case of Hn that Lusztig
induction commutes with Jordan decomposition. More precisely, we have:
The constituents of RM

L (λ) are of the form χ(µ1,µ2), where the µi are obtained
from the λi by adding a succession of hooks or cohooks.

We consider the case of Hn. Then CG∗(s) = K1 ×K2 where K1 (resp. K2)
is isomorphic to SO(2m1 +1) (resp. O±1(2m2)) for some m1,m2 with m1 +



16 BHAMA SRINIVASAN

m2 = n. We have subgroups M∗, L∗ which are intersections of subgroups
dual to M , L with CG∗(s). Then we have M∗ = M1 ×M2, L∗ = L1 × L2,
where M1, L1 ⊆ K1 and M2, L2 ⊆ K2, and characters λi of Li, i = 1, 2.
By applying ([1], 3.2) to the groups Ki we have isometries between the Z-
spans of the set Irr(WMi(Li, λi)) and the set of constituents of RMi

Li
(λi) such

that RKi
Mi

. IMi

Li,(λi)
= IKi

(Li,λi)
. Ind

WKi
(Li,λi)

WMi
(Li,λi)

, i − 1, 2. Here we note that in

the case of groups of the form O±1(2m2) we use the results of Malle [14]
extending ([1], 3.2) to disconnected groups. We also use Lusztig induction
in disconnected groups (see [7]).

We now define IM
(L,λ) as follows. Let (ψ1, ψ2) ∈ Irr(WM (L, λ) = W1

′ ×
W2

′). We identify Wi
′ with WMi(Li, λi). Suppose IKi

(Li,λi)
(ψi) = χµi , a

constituent of RMi
Li

(λi). Then define IM
(L,λ)((ψ1, ψ2)) = χ(µ1,µ2). We then

have an isometry IM
(L,λ) between the Z-spans of the set Irr(WM (L, λ)) and

the set of constituents of RM
L (λ) such that RG

M . IM
(L,λ) = IG

(L,λ) . IndWG(L,λ)
WM (L,λ).

The case of Gn is similar and easier. It was shown in [10] that Lusztig
induction commutes with Jordan decomposition in that case. This proves
the theorem. �

The proof of Theorem 5.1 is a formal extension of ([1], 3.2). We now give
an explicit description of the maps IG

(L,λ) in our case, as in ([1], pp.47,50).

In the case ofG = Gn, the parametrization of quadratic unipotent characters
is either by pairs of partitions µ1, µ1 or by 4-tuples (m1,m2, ρ1, ρ2). In
the case of U(n.q), the latter arises from their construction by Lusztig by
Harish-Chandra induction. Consider the characters occurring in RG

L (λ) for
appropriate (L, λ). The description given in ([1], p.50) shows that, given
such a character, each µi corresponds to a 2f -tuple of partitions whose sizes
add up to Mi, i = 1, 2. (Here the Mi are weights, denoted by a in op.cit.
where the characters are unipotent.) These 2f -tuples are in fact 2f -quotients
of the µi. Now Olsson ([15], p.233) has defined the e- quotient of a symbol
for a positive integer e, and his definition shows that the 2f -quotients of the
µi are in fact the 2f -quotients of the ρi. Since the irreducible characters of
WG(L, λ) are parameterized by pairs of 2f -tuple of partitions, this defines
the map IG

(L,λ) in this case.

Now consider the case of G = Hn where the parametrization of quadratic
unipotent characters is either by pairs of symbols Λ1,Λ2 or by 4-tuples
(h1, h2, ρ1, ρ2). Here again the latter arises from their construction by Lusztig
[13] by Harish-Chandra induction. The connection between the pairs Λ1,Λ2

and the pairs (ρ1, ρ2) was stated in the proof of Lemma 2.2. In ([1], p.50) it
is shown how the map IG

(L,λ) is defined for unipotent characters in this case.
Using this we define the map IG

(L,λ) by taking 2f -quotients of the ρi.
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Then we have a bijection with signs between the set of quadratic unipotent
characters occurring in RG

L (λ) and the set Irr(WG(L, λ)). We then see that
the character of Gn parameterized by (m1,m2, ρ1, ρ2) and the character of
Hn parameterized by (h1, h2, ρ1, ρ2) correspond to the same character in
Irr(WG(L, λ)) in the above bijection, where we choose G,L, λ appropriately
in each case.

We thus have:

Theorem 5.2. Let B and b be blocks with abelian defect groups of a pair
Gn and Hm which correspond as in Section 4, Theorems 4.1, 4.2, 4.3. Then
the correspondence between the sets of quadratic unipotent characters in B
and b factors through the isometry of these sets with the sets Irr(WG(L, λ))
with appropriate G,L, λ for Gn and Hm.

Next we consider perfect isometries, and an analog of ([1], 5.15). For this we
need to consider characters θ ∈ Irr(Z(L)`) for L a Levi subgroup of G = Gn

or G = Hn as in Theorem 3.1 (in the case of Hn this subgroup was denoted
by K). In ([1], 5.15) a subgroup G(θ) of G has been introduced. Here
we give an alternative definition of this group, analogous to a definition in
([5], p.163). Consider a subgroup L∗ of G∗ in duality with L, then an `-
element t ∈ (Z(L∗)`). Then CG∗(t)0 is a Levi subgroup of G∗ and there is a
subgroup G(t) of G in duality with CG∗(t)0. Since ` is odd G(t) is isomorphic
to G(θ), where θ corresponds to a linear character t̂ of G(t), defined when
we have chosen a fixed embedding of F∗

q into Ql. We will use the subgroup
G(t) instead of G(θ) in the following. The groups G(t) can be explicitly
described as being isomorphic to

∏
iGL(mi, q

2f )×Gr or
∏

i U(mi, q
2f )×Gr

in the case of Gn, and to
∏

iGL(mi, q
f ) ×Hr or

∏
i U(mi, q

f ) ×Hr in the
case of Hn.

We consider a quadratic unipotent block b of G = Gn or Hn. We have seen
that the quadratic unipotent characters in b are constituents of RG

L (1×E ×
χ(π1,π2)), where L is a suitable Levi subgroup and (π1, π2) are 2f -core parti-
tions or f -core or f -cocore symbols. We now consider the other characters
in b. We apply ([5], Theorem 2.8) which describes all the constituents in
b with only the restriction that ` is good, which is true in our case. We
also note that since t is an `-element, G(t) is connected and RG

G(t) is an
isometry. Then we get that a character in b is of the form RG

G(t)(t̂χ), up to
sign, where χ is a quadratic unipotent character of G(t). We also note that
an irreducible character of Z(L)` oWG(L, λ) can be written as t̂τ for some
t ∈ (Z(L∗)`) and an irreducible character τ of WG(L, λ) as in ([1], p.71).

The map RG
G(t) in the theorem of Cabanes-Enguehard (op. cit.) involves

a parabolic subgroup. By a recent result of Bonnafé-Michel [J.Algebra 327
(2011), 506-526)] showing that if q > 2 Mackey’s Theorem holds, Lusztig
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induction RG
L where G is a reductive group and L is a Levi subgroup is

independent of the choice of a parabolic subgroup containing L.

We now state the analog of ([1], 5.15) in our case.

Theorem 5.3. Let G = Gn or G = Hn.The map

IG
(L,λ) : ZIrr(Z(L)` oWG(L, λ)) → Z Irr(G, b)

such that
IndZIrr(Z(L)`.WG(L,λ)

ZIrr(Z(L)`.WG(t)(L,λ)(t̂τ) → RG
G(t)(t̂I

G(t)
(L,λ)(τ))

is an `-perfect isometry between (Z(L)`oWG(L, λ)), b(1.(1×E))) and (G, b).

Here we interpret the character 1.(1 × E) as follows. We have WG(L, λ) =
W1 ×W2 as in Theorem 5.1. We take the trivial character 1 on Z(L)`, the
character 1 on W1 and the character E on W2. Then b(1.(1 × E))) is the
block containing 1.(1 × E) of (Z(L)` oWG(L, λ)).

Proof. We use the definition of `-perfect isometry given in ([1], 5.11). We
note the following points in the proof of ([1], 5.15) at which unipotent
characters have to be replaced by quadratic unipotent characters.

• The f -Harish-Chandra theory was proved for quadratic unipotent
characters in classical groups in ([16]), which gives us the analog of
([1], 5.19, 5.18).

• We have verified the extension to our case of ([1]), 3.2) in Theorem
5.1. This is used in ([1], 5.17).

• An e-cuspidal or f -cuspidal quadratic unipotent character is of defect
0 for G = Gn or G = Hn. This follows by Jordan decomposition and
by degree considerations. This generalizes ([1], 5.21).

Then the proof is formally completely analogous to that of ([1], 5.15).
Part (ii) of the result shows that there is an `-perfect isometry between
(Z(L)` oWG(L, λ), 1.(1 × E)) and (G, b). �

We now consider the groups Gn and Hn.

Theorem 5.4. We have `-perfect isometries in the sense of ([1], 5.11) be-
tween the Z-spans of the characters in corresponding blocks of the following
groups:

(i) An `−block of GL(n, q), `|(qf+1) (f odd) and an `−block of Sp(2m, q), `|(qf+
1) (f odd),

(ii) An `−block of U(n, q), `|(qf−1) (f odd) and an `−block of Sp(2m, q), `|(qf−
1) (f odd) .

(iii) An `−block of GL(n, q), `|(qf+1) (f even) and an `−block of Sp(2m, q), `|(qf+
1) (f even).
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(iv) An `−block of U(n, q), `|(qf+1) (f even) and an `−block of Sp(2m, q), `|(qf+
1) (f even) .

In cases (i) and (ii), the block of Gn parameterized by (m1,m2, σ1, σ2,M1,M2),
where m1(m1 + 1)/2 +m2(m2 + 1)/2 + 2N1 + 2N2 = n, corresponds to the
block of Hm parameterized by (h1, h2, σ1, σ2,M1,M2), where h1(h1+1)+h2

2+
N1 +N2 = m. For the connection between the Mi and the Ni see Theorem
3.2. In cases (iii) and (iv) the blocks correspond as in Theorem 4.3.

Proof. The theorem follows from Theorem 5.3, since in each case there is
a perfect isometry between the blocks in question and a block of a “local”
group of the form Z(L)` oWG(L, λ). �

Theorem 5.5. Suppose a block B of Gn and a block b of Hn correspond as
in Theorem 5.4. The quadratic unipotent characters in B and b correspond
under the isometry as follows: In cases (i) and (ii) above, the character
of Gn parameterized by (m1,m2, ρ1, ρ2) corresponds to the character of Hn

parameterized by (h1, h2, ρ1, ρ2). In cases (iii) and (iv) the characters cor-
respond as in Theorem 4.3.

Proof. The theorem follows from the fact that in the map IG
(L,λ) in Theorem

5.3 we can take t = 1. Using Theorem 5.2 we get the correspondence between
characters as in Theorem 2.1. �

Remark. The case of Gn is easier than that of Hn, as is seen below.

Let G = Gn, B a quadratic unipotent block of Gn. The quadratic unipo-
tent characters in B are of the form χ(µ1,µ2) in the Lusztig series E(G, (s)),
where (µ1, µ2) are partitions of a fixed pair k1, k2 respectively. By a result
of Bonnafé and Rouquier the block B is Morita equivalent to a block B(s)
of CG(s). Now since s is central in CG(s) the block B(s) can be regarded
as the product of two unipotent blocks of CG(s), and thus ([1],5.15) can be
applied to it. We get a perfect isometry between the block and a quadratic
unipotent block of the “local subgroup” Z(L)` oWG(L, λ).

We now consider signs appearing in the perfect isometries of Theorem 5.4
and Theorem 5.5. Consider a quadratic unipotent character χ of Gn param-
eterized by a pair (λ1, λ2) of partitions which corresponds to the quadratic
unipotent character ψ ofHm parameterized by a pair (Λ1,Λ2) of symbols un-
der the perfect isometry. Enguehard ([9], p.34) has used the combinatorics
of partitions and symbols to define a sign νe on partitions and symbols and
uses them to calculate the signs which appear in ( [9], Theorem B), which
is the same theorem as ([1], 3.2). Thus the sign appearing in the correspon-
dence between χ and ψ as above is νe(λ1)νe(λ2)νe(Λ1)νe(Λ2).
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6. Endoscopic groups

Let G be a finite reductive group, ` a prime as before, and (s) an `-
prime semisimple class in G∗. Let B be an `-block of G parameterized
by (s). M.Enguehard has proved the following [8]. There is a (possibly
disconnected) group G(s) which need not be a subgroup of G, and a block
B(s) of G(s) such that B and B(s) correspond, in the following sense:

• There is a bijection between characters in B and B(s)
• The defect groups of B and B(s) are isomorphic
• The Brauer categories of B and B(s) are equivalent

The group G(s) is dual to the centralizer of s in G∗. We call G(s) an
endoscopic group of G, in analogy with a terminology used in p-adic groups.
We describe the endoscopic groups in our case ([8], 3.5.4).

Case 1. G = Gn, B corresponds to the Levi subgroup L of the form
T1 × T2 × Gn′ , T1 (resp. T2) is a product of M1 (resp. M2) tori of order
q2f − 1, and we take a character of L to be 1 (resp. E) on T1 (resp. T2) and
the character χ(λ1,λ2) of defect 0 of Gn′ . The pair (λ1, λ2) corresponds to a
pair (m1,m2) as before. Then s ∈ Gn = G∗

n has n1 (resp. n2) eigenvalues 1
(resp. -1) where n1 = 2fM1 + |λ1|, n2 = 2fM2 + |λ2|.

Then G(s) = Gn(s) ∼= Gn1 ×Gn2 .

Case 2. G = Hm, B corresponds to the Levi subgroup L of the form
T1 × T2 × Hm′ , T1 (resp. T2) is a product of M1 (resp. M2) tori of order
qf − 1 or qf + 1, and we take a character of L to be 1 (resp. E) on T1

(resp. T2) and the character χ(π1,π2) of defect 0 of Hm′ . The pair (π1, π2)
corresponds to a pair (h1, h2) as before. Then s ∈ H∗

m has k1 (resp. k2)
eigenvalues 1 (resp. -1) where k1 = fM1 + rankπ1, k2 = fM2 + rankπ2.
We note that H∗

m
∼= SO(2m+ 1).

Then H(s) = Hm(s) ∼= Sp(2k1, q) × O(2k2, q). Here we get O+(2k2, q) if
h2 is even and O−(2k2, q) if h2 is odd (see [18], 4.3).

Under the Jordan decomposition of characters, the quadratic unipotent
characters of Gn and Hm correspond to characters of Gn(s) and Hm(s)
respectively which are tensor products of unipotent characters with a fixed
linear character ŝ. There is a bijection between the set of quadratic unipotent
blocks of Gn (resp. Hm) and the set of blocks of Gn(s) (resp. Hm(s) )
which contain the characters as above, and then a bijection between the set
of quadratic unipotent blocks of Gn (resp. Hm) and the set of unipotent
blocks of Gn(s) (resp. Hm(s) ) . The proof of the theorem below follows
from these bijections.

Theorem 6.1. We have block correspondences between unipotent blocks of
endoscopic groups as follows. As in Theorems 4.1,4.2,4.3 we have (i) the
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defect groups of corresponding blocks B and b are isomorphic, and (ii) there
is a natural bijection between the unipotent characters in B and those in b.

{` − blocks of GL(n1, q) × GL(n2, q), `|(qf + 1) (f odd), n ≥ 0} ↔
{`− blocks of Sp(2k1, q) ×O(2k2, q), `|(qf + 1) (f odd), m ≥ 0}.

{` − blocks of U(n1, q) × U(n2, q), `|(qf − 1) (f odd), n ≥ 0} ↔ {` −
blocks of Sp(2k1, q) ×O(2k2, q), `|(qf − 1) (f odd), m ≥ 0}

{` − blocks of U(n1, q) × U(n2, q), `|(qf + 1) (f even), n ≥ 0} ↔ {` −
blocks of Sp(2k1, q) ×O(2k2, q), `|(qf + 1) (f even),m ≥ 0}

{` − blocks of GL(n1, q) × GL(n2, q), `|(qf + 1) (f even), n ≥ 0} ↔
{`− blocks of Sp(2k1, q) ×O(2k2, q), `|(qf + 1) (f even), m ≥ 0}
Here n = n1 + n2 and m = k1 + k2 correspond as before, and n1, n2, k1, k2

are as defined.

We now consider perfect isometries between the corresponding blocks above,
which follow easily from the case of [1].

Let B(s) be an `-block of Gn(s) = G1×G2, where G1 = Gn1 and G2 = Gn2 .
Then B(s) factorizes as B1(s) ×B2(s) where B1(s) and B2(s) are blocks of
G1 and G2 respectively. There are Levi subgroups L1(s) and L2(s) of G1

and G2 respectively such that L1(s) = T1 × Gn′
1

and L2(s) = T2 × Gn′
2
.

Here T1 (resp. T2) is a product of M1 (resp. M2) tori of order q2f − 1.
Consider the “local group” ((T1)` × (T2)`) n (Z2f o SM1 × Z2f o SM2). A
character θ of (T1)` × (T2)` factorizes as θ1 × θ2, where θi ∈ Irr((Ti)`),
i = 1, 2. Then the pair θ1, θ2 determines a pair (t1, t2) of `-elements in
G1 ×G2, and then a subgroup G(t1) ×G(t2) of G1 ×G2 which plays a role
analogous to that of G(t) in the case of Gn. Since B(s) is a product of
blocks of G1 and G2 containing characters which are products of a fixed
linear character and unipotent characters, by an application of [1] we get
a perfect isometry of (Gn(s), B(s)) with the principal block of the “local
group” ((T1)` × (T2)`) o (Z2f o SM1 × Z2f o SM2).

In the case of (Hm(s), b(s)) , similarly we get a perfect isometry with the
principal block of the same “local group” (T1)`×(T2)`o(Z2f oSM1×Z2f oSM2).
We note that here the elements t1, t2 are to be taken in the dual group Hm

∗.
We also note that as before, in the case where we have a group of the form
O(2k, q) we use results of Malle [14] extending [1] to disconnected groups.
Finally we get a perfect isometry between B(s) and b(s).
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