GREENBERG-SHALOM’S COMMENSURATOR
HYPOTHESIS AND APPLICATIONS

NIC BRODY, DAVID FISHER, MAHAN MJ, AND WOUTER VAN LIMBEEK

ABSTRACT. We discuss many surprising implications of a positive an-
swer to a question raised in some cases by Greenberg in the ‘70s and
more generally by Shalom in the early 2000s. We refer to this posi-
tive answer as the Greenberg-Shalom hypothesis. This hypothesis then
says that any infinite discrete subgroup of a semisimple Lie group with
dense commensurator is a lattice in a product of some factors. For some
applications it is natural to extend the hypothesis to cover semisimple
algebraic groups over other fields as well.
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1. INTRODUCTION

Let G be a real or p-adic semisimple Lie group with finite center and
without compact factors, or a finite product of such groups. More precisely,
we consider G = G(k) where k is a local field of characteristic zero and G
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is a semisimple algebraic group defined over k and also products of groups
of this type. Let I' C G be a discrete subgroup with commensurator A.
Borel proved that if I" is an arithmetic lattice, then the commensurator con-
tains the rational points of G and in particular is almost dense in G' [Bor66].
Here, ‘almost dense’ means its closure has finite index in G. Greenberg (for
G = SO(n,1)) and Shalom (in general) asked whether almost dense com-
mensurator of a discrete, Zariski-dense subgroup I' detects its arithmeticity.
We formulate the positive answer to this question as a hypothesis, since here
we are primarily interested in the implications if it is true.

Hypothesis 1.1 (Greenberg [Gre74], Shalom, see [LLR11]). Let G be a
semisimple Lie group with finite center and without compact factors. Sup-
pose I' C (G is a discrete, Zariski-dense subgroup of G whose commensurator
A C G is almost dense. Then I' is an arithmetic lattice in G.

We will refer to Hypothesis as the Greenberg-Shalom hypothesis. We
remark here that the hypothesis seems quite plausible on first encounter,
and Greenberg and Shalom both seem inclined to believe it. On the other
hand, the many implications of the hypothesis discussed here may cast some
doubt on the likelihood that it is correct. The purpose of this article is to
exhibit these connections between the hypothesis and other problems, many
of which do not a priori involve commensurators. A short overview of these
applications (numbering refers to the corresponding (sub)section):

A question of Benoist on existence of discrete, irreducible free or surface
subgroups in products of simple real and p-adic Lie groups,

(4.2) A conjecture of Lyndon-Ullman and Kim-Koberda on groups generated

by parabolics,

Existence of elements with integral traces in hyperbolic 3-manifold

groups,

Applications to the rank (i.e. minimal number of generators) of S-

arithmetic lattices, related invariants, and a question of Lubotzky,

A question of Serre on coherence of SL(2,Z[1/p]) and related groups,

and a problem of Wise whether coherence is geometric,

The Margulis-Zimmer conjecture on arithmeticity of commensurated

subgroups of S-arithmetic lattices.

A question of Fisher-Larsen-Spatzier-Stover on irreducible surface group

acting on products of trees, as well as a related question about the

minimal transcendence degree of a surface group representation over a

field of characteristic p.

=
e e o B

To close out this introduction, we discuss the quite limited progress on
Greenberg-Shalom’s question: First, Margulis proved that non-arithmetic
lattices have discrete commensurators, thereby resolving Greenberg-
Shalom’s question for lattices. At roughly the same time and apparently
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unaware of Margulis’ work, Greenberg proved Hypothesis for finitely gen-
erated subgroups of G = SL(2,R) [Gre74]. Building on work by Leininger-
Long-Reid [LLR11], Mj proved Hypothesis for finitely generated sub-
groups of SL(2,C) [Mj11]. For all other cases of G, as well as general infin-
itely generated subgroups of the above, Hypothesis[I.1]is open. Koberda-Mj
proved the hypothesis for normal subgroups I' of arithmetic lattices in rank
1 with positive first Betti number [KMI19]. Fisher-Mj-Van Limbeek proved
the hypothesis for all normal subgroups of lattices [FMvL22]. Greenberg
(for SO(n, 1)) and Mj (in general) also proved that any group satisfying the
conditions of the hypothesis has dense limit set |Gre74l, MjI1].
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2. NOTATION, STANDING ASSUMPTIONS, AND BACKGROUND ON
ALGEBRAIC GROUPS

In this section, we will fix some standing assumptions that will be in place
for the rest of this article. Subsequent sections may have further assumptions
that will be detailed at the beginning of each section.

Standing assumptions 2.1.

e [ is a finite set indexing local fields k;,7 € I, of characteristic zero.

e (G; are connected, absolutely simple, isotropic, adjoint algebraic
groups over k;. We set G; := G;(k;) and G = [[,.;G;. When
not otherwise specified, we equip G with the analytic topology.

e [' C (G is a discrete subgroup with almost dense commensurator
A C G and with unbounded projection to each G;. Here a subgroup
is said to be almost dense if its closure has finite index. See Section
for more information on almost dense subgroups.

Remark 2.2. Much (but not all) of our discussion also applies when k; are
local fields of positive characteristic, and the Greenberg-Shalom problem
can be formulated, and is open and interesting, in that setting as well.
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Notation 2.3. Let GG be as above. For i € I, we denote by pr; : G — Gj the
canonical projection. For J C I, we set Gy := HjeJ Gj,andpr;: G — Gy
denotes the canonical projection.

We introduce the following the following irreducibility assumption:

Definition 2.4. Let G be as in the above standing assumptions and let
L C G be a subgroup. We say L is strongly irreducible if for every proper
subset J C I, the projection pr;(L) C G is almost dense.

From the above definition, it is not at all obvious that problems for general
discrete (or closed) groups can be reduced to strongly irreducible discrete
(or closed) groups, i.e. if © C G is a discrete subgroup, it is not clear there
exists J C I such that pr;(0) C G is discrete and strongly irreducible. This
will be discussed in more detail in Section [3] where strong irreducibility is
related to the notion of irreducibility, which is easier to reduce to.

2.1. Preliminaries on simple algebraic groups. We will now review
classical results in the study of simple algebraic groups for later use, and we
end by proving that under Standing Assumptions the projections of I"
are Zariski-dense. We start by fixing some notation:

Standing assumptions 2.5. For the rest of this section, k denotes a local
field of characteristic zero, and H denotes a connected semisimple adjoint
algebraic group defined over k such that H(k) does not have compact factors.

We write H := H(k). Let us start with the following useful definition:

Definition 2.6. H" denotes the group generated by unipotent elements of
H.

It is not necessary to assume k is a local field of characteristic zero, but
the definition of H* is more difficult in general. To simplify the discussion
and since we only need this notion for local fields of characteristic zero, we
will only give this definition (but see e.g. [Mar91l, Section I.1.5]). We have
the following result due to Borel-Tits:

Theorem 2.7 (Borel-Tits [BT73l, 6.7, 6.9, and 6.14]).
(i) HT C H is Zariski-dense and (analytically) open. In particular H™
has finite index in H.
(i) HT does not contain any proper subgroup of finite index. Hence every
finite index subgroup of H contains H™T.

If Kk = R, then H* is the connected component of H that contains the
identity (see again [BT73, 6.14]). In particular, any open subgroup of H con-
tains HT. A nonarchimedean analogue is the following unpublished result
of Tits, with a published proof due to Prasad:

Theorem 2.8 (Tits-Prasad [Pra82]). Assume in addition that H is almost
simple. Then any noncompact, open subgroup of H contains H™.
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Recall that a subgroup A C H is almost dense if its closure has finite
index in H. In view of the above results, A is almost dense if and only if
its closure contains HT. Using that H ™ is Zariski-dense, it follows that any
almost dense group is Zariski-dense.

Now, let us return to the situation of groups with almost dense commen-
surators and prove the following straightforward lemma:

Lemma 2.9. Suppose © C H is an infinite subgroup with Zariski-dense
commensurator A. Then there is a subset of factors Hy C H containing ©
and © C Hj is Zariski-dense.

Remark 2.10. In the above lemma, we do not assume that © is a discrete
subgroup of H.

Proof. Consider the Zariski-closures of finite index subgroups of O, partially
ordered by inclusion. We say © C © is Zariski-dense in © if e’ =8~
By the Noetherian property, there is a finite index subgroup ©’ of © such
that any finite index subgroup ©” C ©’ is Zariski-dense in ©’. Let L be the
Zariski-closure of © in H.

We claim that A normalizes L: Indeed, for any § € A, there is some finite
index subgroup ©5 C ©' with 5@35*1 C ©'. Since both ©f and (5@35*1 are
Zariski-dense in ©’, it follows that § normalizes L. Since A is Zariski-dense
and L is Zariski-closed, it follows that H normalizes L. Since H is adjoint,
we have L = Hj for some collection of factors J.

Finally, we conclude that © is contained in H ;: Indeed, the image of © in
the remaining factors H je is finite and normalized by the projection pr jc(A).
A finite index subgroup A’ of A has projection to Hjc that centralizes the
image of © and is still Zariski-dense, so that the image of © is central in
H je. Finally, since H is adjoint, H jc is centerless. [l

Remark 2.11. The proof does not use the analytic topology on k, so the
statement is still true if k is a number field.

Remark 2.12. In particular, if I and G are as in Standing Assumptions[2.1
then for every i € I, the projection pr;(I') C G; is Zariski-dense: Namely,
pr;(T") has almost dense (and hence Zariski-dense) commensurator by as-
sumption. Since pr;(I") is unbounded, it is infinite, so that Lemma
implies it is Zariski-dense.

3. IRREDUCIBILITY

In this section we discuss various notions of irreducibility. Let G =[], G;
be as in Standing Assumptions [2.I] and let I' C G be a discrete subgroup.
We want to define what it means for I' to be #rreducible in the product
G = [[; Gi. There are two obvious ways one might reduce the study of
I" to a simpler scenario, namely by passing to either a quotient of G or a
subgroup of G. We can pass to a quotient precisely when the projection of
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I" to some proper subset of factors is discrete. To see when one may pass to
a subgroup is more involved, and we need to introduce some notation.

We set Q := R and if p is a finite prime or oo, we denote by I, C I
the subset of Q,-analytic factors of G' (so I denotes the collection of
archimedean factors), and we write Gy := [[;c; Gi for their product. We
restrict scalars on all factors to Q,, and define the Q,-algebraic group
RyG = [lier, Rrij,Gi- We write Ry,G = (RpG)(Qp). Of course we
have R,G = G, as Qp-analytic groups, but R,G comes equipped with a
Zariski-topology as a Q,-algebraic group. We will refer to this as the Q,-
Zariski-topology on G). Note that given a discrete group I' € G, we could
first project to any subproduct G such that pr;(I") is discrete, and then

pass to the subgroup H := Hp pry, (F)Qp, where the closure is taken with
respect to the Q)-Zariski-topology on R,G. This motivates the following
definition:

Definition 3.1. A subgroup O is irreducible in G if for every proper subset
of factors J C I, the projection of © to G; = HjeJ G is not discrete, and for
every p (a finite prime or 00), the projection of © to G), is Q,-Zariski-dense.

Most irreducible groups we consider will be discrete, but we do not assume
this for the purposes of the above definition.

Remark 3.2. If G is simple, then irreducibility is equivalent to Q)-Zariski-
denseness.

Remark 3.3. Any discrete irreducible subgroup ©® C G has unbounded
projections to every simple factor G;: If G itself is simple, this follows from
Zariski-denseness of ©. If there is more than one factor, then for any factor
G;, the image of © in G/G; is indiscrete. For any bounded open set U C
G/G;, the set Op of elements of © with image in U is infinite and has
discrete projection to G;, and therefore is unbounded in G;.

In particular, any discrete, irreducible subgroup of G with almost dense
commensurator satisfies Standing Assumptions

Recall that for a subset of factors J C I, we write pr; : G — G for the
natural projection. Our goal will be to prove that projections of irreducible
groups to proper subsets of factors do not merely fail to be discrete, but are
in fact almost dense:

Proposition 3.4. Let I' C G be discrete and irreducible. Then for any
proper subset J C I, the closure pr;(I') contains Gj.

Therefore, a discrete subgroup is irreducible if and only if it is strongly
irreducible.

We will often use the following observation without explicit comment:

Remark 3.5. For a connected semisimple algebraic group H defined over
a field of characteristic zero k, passing from H(k) to H(k)T commutes with
restriction of scalars (see [Mar91, Section 1.1.7]), so that (R,G)* = G}
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Remark 3.6. For the statement at the end of the proposition, recall that
we defined I to be strongly irreducible if it has the property of almost dense
projections. Since G; C G has finite index (due to Borel-Tits, see Theorem
2.7(i)), we see that the first statement of the above Proposition shows
that any irreducible group is strongly irreducible. Conversely, since for all p
(a finite prime or o), G} is Q,-Zariski-dense in G, (see Theorem (i)),
the projection of a strongly irreducible group to G,, is Q,-Zariski-dense (and
indiscrete), and therefore any strongly irreducible group is, as the name
suggests, irreducible. Thus to prove Proposition [3.4], it remains to prove its
first claim.

The utility of Proposition [3.4]should be clear: irreducibility is much easier
to establish than strong irreducibility, since the former only requires Q-
Zariski-denseness of projections to R,G, whereas the latter requires almost
denseness (in the analytic topology!) of all subproduct projections. On the
other hand, strong irreducibility is a much more powerful property to use in
applications.

We start by proving Proposition [3.4] in the ‘pure’ case where all factors
of J are analytic over the same field. We will actually prove the following
stronger statement that will be used in the general case.

Lemma 3.7. Let I' C G be discrete and irreducible. Let p be a finite prime
or oo and let H C G, be closed, nondiscrete subgroup normalized by I'. Then
there is a subset Iy C I, such that G;FH is an open subgroup of H.

Remark 3.8. In the pure case, the the above lemma indeed shows irre-
ducibility implies strong irreducibility: Letting I" be discrete and irreducible,
J C I, and taking H := pr;(I'), the above Lemma gives a subset Iy C J
such that G}FH C H is open. In fact we must have Iz = J: Since H/G}FH is

discrete, if there exists j € J\Iy, then pr;(H) and hence pr;(I') would be

discrete, but this contradicts irreducibility of I'. This shows G} C pr(I)
and hence the latter has finite index in G .

Proof. Since H is a closed subgroup of the analytic group G, its Lie algebra
b is well-defined, and since H is not discrete, b is nontrivial. Since b is
Ad(pry, (T'))-invariant and pr; (I') is Qp-Zariski-dense in Gy, it follows that
b is an ideal in the Lie algebra of G,. Hence there is a nonempty subset
Iy C I, such that b = @;er,,9;. We will show that H contains G}LH.

To start, note that HNG,, is open and closed in Gy, . In the archimedean
case, H therefore contains the connected component of identity, which co-
incides with GYH. In the nonarchimedean case, it suffices to prove H N G;
is noncompact for every i € Iy, since then the theorem of Tits-Prasad (see
T heorem shows that H NG; contains G:r. To establish noncompactness,
note that H N G; is normalized by pr;(I'), which is unbounded (since I' is
irreducible, see Remark. But any bounded open subgroup has bounded
normalizer, so H N G; must be unbounded as well. [l
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We will complete the proof of Proposition [3.4] in the general, possibly
mixed, case.

Proof. Write J = Upep,J, where J,, consists of the Qp-analytic factors in J
and Py is a finite subset of primes and possibly co. Let H denote the closure
of the projection of I' to G;. By passing to a finite index subgroup of I,
we can assume that H C G} and we aim to show H = G}r. First, suppose
that the connected component of identity H°® of H is nontrivial (so that
necessarily Jo, # @). We apply Lemma to the subgroup H° and obtain
that there is a subset Jp o C Joo such that GjH,oo C HF° is open. Therefore
we can project to the factors given by J\Jy o and assume Jy o = .

We will aim to show that after the above reduction, P; consists of finite
primes and H contains Gjp for every p € P;. Since H is locally compact
and totally disconnected, it contains a compact open subgroup K. Because
K is compact and totally disconnected, its image in (G;__ is finite, so that by
possibly shrinking K, we can assume K projects trivially to the archimedean
factors Gy and therefore H has discrete projection. However, this is im-
possible because the projection of I' C H to Gj_, is indiscrete, so we must
have J, = @.

It remains to show that H contains G}rp for every p € P;. Let K, be the
projection of K to G, for p € P;. By possibly shrinking K further, we can
assume that the map p, : © — 2P is a contraction on K, for all p € P;.
Then we claim that K = [[ cp, Kp. Indeed, let k = (kp)p, € K C ][, K.
Fix p and let d be the product of the remaining primes. Since ug is an
isometry on K, but a contraction on K, for all £ # p, there is some sequence
Ny, — oo such that kgnm = i (kp) — kp and hence k%" — (kp.e, ... e) €
K, x H#p K. Since K is closed, we see that K, C K for all p € Py, as
desired.

Further, we claim that K, is nondiscrete for all p € P;. Indeed, if the
image of K in G, were discrete, then so would the image of H, but we know
this is impossible because I' has nondiscrete image. Since K, is nondiscrete
and K = Hp K, is contained in H, it follows that for every p, the intersection
H NGy, is nondiscrete. We apply Lemma to the subgroup H NG, and
obtain that for every p € Py, thereis a subset Jp,, C J), such that G}FH e H
is open.

Set Jp := Upep,Ju,p. To complete the proof, we will argue by contradic-
tion that Jg = J: We have shown above that GjH is an open subgroup of
H, so the image of H in the complementary factors G j\ j,, is discrete. This
contradicts irreducibility of I'. (|

4. IRREDUCIBLE GROUPS ARE LATTICES

4.1. Irreducible groups in products of semisimple Lie groups. We
can now give the first application of the Greenberg-Shalom hypothesis.
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Aside from its intrinsic interest, this result will provide an important con-
nection to other applications as well.

Proposition 4.1. Assume the Greenberg-Shalom Hypothesis[1.1 Let G be
as in Standing assumptions[2.1] with at least two factors, and assume at least
one factor is nonarchimedean. Then any discrete and irreducible subgroup
I' C G is an irreducible lattice.

Proof. If G has an archimedean factor, let G denote the product of all
archimedean factors and Gy, the product of all nonarchimedean factors. If
there is no archimedean factor, let G, be one of the nonarchimedean factors
and Gy, the product of the remaining factors.

Let Kna € G, be a maximal compact open subgroup. Let I'yj; C T
denote the subgroup that maps into K, under projection to Gp,. Then
Proo(I'na) € G is irreducible, discrete and has commensurator containing
the dense subgroup pro(I') € Ge. In particular pro (I'na) is Zariski-dense
in G (see Lemma , and hence by the Greenberg-Shalom hypothesis, is
a lattice. It then follows that I' C G is a lattice by an argument similar to
the proof of a lemma of Venkataramana’s first stated as [LZ01, Lemma 2.3]
and generalized in [FMvL22, Lemma 4.1]. The latter applies to subgroups
I' of S-arithmetic lattices containing a T-arithmetic lattice for T C S. Here
we need a slightly different version where I' is not given as a subgroup of a
lattice, so we include the relevant part of the argument for completeness:

By passing to a finite index subgroup, we can assume without loss of
generality that T' C GT. Recall that K, C G}, is a maximal compact open
subgroup, and that pr,, (Tna) € Kya is dense. Let F' C G be a fundamental
domain for the lattice pro (I'na) € GL. As in Venkataramana’s lemma and
[EMvL22l Lemma 4.1], to show I' C G is a lattice, we will show that F' x K,
is a fundamental domain for I' C GT.

First we show the I-translates of F' x K, are disjoint: If v(F x Ky,) N
(F x Kya) # @, then by projecting to the second factor and using that Ky,
is a group, we see that v € Ky, and hence v € T'y,. But then by projecting
to the first factor, we see that vF'N F' # &, and since F' is a fundamental
domain for I'y,, we conclude that v = e.

Next, we show that I'(F' x K,,) = G. Since Ky, is pry, (I'na)-invariant
and F' C G is a fundamental domain for pr. (I',,), it suffices to show that
prya(T) Kpa = G. But this is immediate because pr,,(I') C G, is dense and
K., is open. |

The existence of irreducible surface subgroups in products of p-adic groups
is a folklore problem that was widely discussed at MSRI in 2015. A vari-
ant for actions on products of trees was asked explicitly by Fisher-Larsen-
Spatzier-Stover [FLSSI8] and will be discussed in detail later (see Sectiong).
In a conversation in January 2019, Yves Benoist pointed out to the second
author that it was also unknown if there are irreducible free groups in prod-
ucts of real and p-adic Lie groups or irreducible surface groups in products
of real Lie groups. Much earlier, Long and Reid, using some ideas of Magnus
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[MagT73], constructed an explicit surface group in PGL(2,Q2) x PGL(2,Q3)
generated by the two matrices:

30 1L 9
3 32 4

This is an orbifold group with an index 4 subgroup that corresponds to a
cover by a surface of genus two. Extensive computations by Long-Reid, Agol
and Brody suggest that this example is a discrete, irreducible subgroup of
the product but according to Proposition this would give a negative
answer to Greenberg-Shalom’s Question It is worth comparing with
the computer-assisted results of Kim-Koberda [KK22| that are relevant to
another application below (see Section , where groups were shown to be
non-free by finding extremely long relators. If Hypothesis[I.1]is correct, then
the computational evidence above about the Long-Reid group only indicates
that one needs extremely long words in a and b to find elements of integral
trace. We summarize the implications of the Greenberg-Shalom hypothesis
for these types of questions in the next two results.

Corollary 4.2. Assume the Greenberg-Shalom hypothesis and suppose G
has no archimedean factors and |I| > 2. Then there is no irreducible discrete
surface group or irreducible discrete finitely generated free group in G. If in
addition all simple factors of G have rank one, then there is no discrete
surface group in G.

Proof. The first statement follows e.g. from the fact that a surface group A
can only be a lattice in a semisimple algebraic group if the group is locally
isomorphic to PSL(2,R) and that a finitely generated free group Fj is only a
lattice in a simple algebraic group of rank one over a non-archimedean field
or a group locally isomorphic to PSL(2,R).

For the second point, we have a surface group A < G where G = [[;; G;
where each Gj is a rank one p;-adic group whose Bruhat-Tits building is a
tree. After some initial reductions, we will argue that A is irreducible. First,
by [FLSS18, Theorem 15], there is a subset J C I such that the projection
of A to each G is faithful and indiscrete where A < G; = [[;c,; G, is
discrete and |J| > 2. We fix a subset J that is minimal with respect to these
properties.

For j € J, the Qp,-Zariski closure of the projection of A to G is simple:
Otherwise it would, up to finite index, fix a point at infinity, but in Section
@ we prove a slight strengthening of [FLSS18, Theorem 15] which shows
that the projection of finite index subgroups of A to each G; do not fix a
vertex at infinity.

We now replace every G; by the Q;-Zariski closure of the projection of
A, and argue that A C G is irreducible. Henceforth we will regard G;
as a Qp,-algebraic group, and omit the field when referring to its Zariski-
topology.
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Recall that for each prime p, the collection of p-adic factors of G is
indexed by J,, and we write G, := Hje A G for the product of the p-adic
factors of G;. By minimality of .J, for every J' C J, the projection of A to
Gy is indiscrete.

Therefore it remains to show that for every prime p, the projection of A
to G is Zariski-dense. Let H), be the Zariski-closure of the projection of A,
and let le) C J, be those values of j such that G; C H,. We will argue by
contradiction that ‘]1,7 = Jp, and this will complete the proof.

Suppose therefore that ‘]1/7 is a proper subset of .J,. Consider now the
image of H), in the product of the remaining factors G, /G e Since for
every j € Jp, the projection of A to G is Zariski-dense, the image of H),
surjects onto (but does not contain) G for j € Jp\Jy. Inparticular, G,,/G s,
consists of at least two factors.

Fix one such factor Gj,. Since the kernel of the projection of H), to G,
would be normal in the remaining factors, it is a product of some subset of
them, but since H), does not contain any factors of G, /G T We conclude
H,, projects isomorphically onto G},.

Therefore the projection

HpXGJII)XGJ/GJp%GjOXGJIIOXGJ/GJP

that replaces H, by G}, is a topological isomorphism. Since (the projection
of) A is discrete in the former, it is also discrete in the latter. However,
since Jp,\J, consists of at least two factors, this contradicts minimality of .J.

O

We call a surface group A in PSL(2,R) algebraic if A < PSL(2,Q). By
finite generation of surface groups it follows that A < PSL(2, k) for some
number field k. Let Oy be the ring of integers of k. Then we have:

Corollary 4.3. Let A be an algebraic surface group and assume the
Greenberg-Shalom hypothesis. Then T' := A N PSL(2, Oy) is infinite, com-
mensurated by A and Zariski-dense in PSL(2, k).

Proof. As A is finitely generated, there are at most finitely many finite places
S of k such that there is an element of A of norm greater than one in the
valuation. Viewing A as a subgroup of G := [],.¢PSL(2,ks), we see I'
is the intersection of A with a compact open subgroup in G. It follows
immediately that A commensurates I' and that if ' is infinite, it is Zariski
dense (see Lemma , so it remains to show I' is infinite. Corollary
implies that A is not discrete in G and so I' is infinite. ([

In the above results, we require at least one factor to be totally discon-
nected (i.e. a p-adic Lie group). As mentioned above, the second author
learned of variants of this question where both factors are real Lie groups
from Yves Benoist in January 2019. The simplest and perhaps most intrigu-
ing case is:
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Question 4.4 (Benoist). Is there a free group that acts properly discontin-
uously and irreducibly on H? x H??

We believe the requirement of a totally disconnected factor in Proposition
[4.1]is an artefact of the method rather than a genuine difference. By analogy
with Proposition [£.I] we propose the following strengthening of Benoist’s
question:

Problem 4.5. Let GG1, G2 be real semisimple Lie groups with finite cen-
ter and no compact factors, and suppose A C G; x (9 is a discrete and
irreducible subgroup. Is A an arithmetic lattice?

Just as in Problem irreducible groups A as in the above problem
give rise to objects in one factor with large commensurator. But since Go
is no longer totally disconnected, they are no longer groups: More precisely,
consider I' := AN (G x U) where U C G is an open neighborhood of
identity with compact closure. Note that I" is no longer a subgroup, but only
an approximate subgroup. This approximate subgroup is commensurated by
A in the sense of [Mac23bl Definition 2.1.5]. By analogy with Proposition
we suggest the following variation of Greenberg-Shalom’s Question [I.1
as a way of approaching Problem

Question 4.6. Let G be as in the Standing Assumptions and let I" be a
discrete, Zariski-dense, approximate subgroup with almost dense commen-
surator. Is I' an approximate lattice?

We remark here that for approximate subgroups of G, there is a well-
defined notion of being an approximate lattice and of arithmeticity, and
Machado (for real higher rank Lie groups) [Mac23a] and Hrushovski (in gen-
eral) [Hru20] have simultaneously classified approximate lattices in products
of simple algebraic groups defined over local fields: Namely, for any approxi-
mate lattice A C G, we can decompose G = (G1 X G such that A is commen-
surable to a product of a lattice in G; and an arithmetic approximate lattice
in G9. Here an arithmetic approximate lattice in G is either an arithmetic
lattice or obtained as the intersection of an irreducible lattice in G x H with
G x U, where U is an open neighborhood of identity in H. For a thorough
account of the state of the art on approximate lattices, see Machado’s recent
preprint [Mac23b].

4.2. Groups generated by parabolic elements. For the remainder of
this section, we discuss applications of rigidity of irreducible groups in
semisimple Lie groups to problems that do not seemingly involve irreducible
groups or commensurators. To state this problem, we let ¢ € C be a param-
eter, and we let A, be the group generated by

(10 (1 ¢
O A ()

The algebraic structure of A,, especially whether it is free or not, has been
the subject of much work, starting with Sanov’s 1947 theorem that Ay is
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free [Sand7], and Brenner’s theorem that A, is free and discrete if |g| > 4
[Breb5), which implies A, is free for transcendental values of ¢g. Freeness
of A, for nonzero rational values of ¢ in (—4,4) is a long-standing open
problem first mentioned by Brenner and Hirsch. The question was really
first studied in the work of Lyndon-Ullman, and later a negative answer has
been conjectured by Kim-Koberda:

Conjecture 4.7 (Lyndon-Ullman, Kim-Koberda [LU69, KK22]). For
nonzero rational values of ¢ in (—4,4), the group A, is not free.

Kim-Koberda have proved this for denominators up to 24. For |¢| < 4
(not necessarily rational), Knapp has proved that A, is discrete if and only
if 1 — q/2 = cos((n — 2)7/n) for some integer n > 3 [Kna69]. Indeed, note
that the element ab;l has trace |2 — ¢q| < 2, hence it is elliptic. When ¢ is
a rational non-integer, this must be an elliptic of infinite order. The case
that A, is discrete has been further studied by Agol, showing in particular
that As and Ag are not free, see JAOPT20]. Knapp’s theorem immediately
implies A, is indiscrete for nonintegral rational values with [¢] < 4. A
complete description of A, up to finite index, and in particular a positive
answer to the above conjecture, follows from Greenberg-Shalom’s problem:

Theorem 4.8. Assume the Greenberg-Shalom Hypothesis [1.1.  Then for
every non-integral rational ¢ = r/s € (—4,4), the group Ay has finite index
in SL(2,Z[1/s]). In particular, Conjecture is true.

Proof. If ¢ = r/s is written in lowest terms and is not integral, then A, is
a discrete subgroup of G := SL(2,R) x [],,SL(2,Qp). Let T be a minimal
subset of factors such that A, has discrete projection to Gr. Note that T’
consists of at least two factors: The projection of A, to SL(2,R) is not dis-
crete by the above-mentioned work of Knapp [Kna69|, and its projection to
SL(2,Qp) is not discrete because a € SL(2, Z,) has infinite order. Further the
projections are Zariski-dense since their Zariski-closures cannot be solvable,
and SL(2,R) and SL(2, Q,) do not contain proper Zariski-closed non-solvable
subgroups. Therefore pry-(A,) C G is irreducible, and by Proposition
prr(4,) is a lattice in Gp. Note that 7' must contain oo, because a gen-
erates an indiscrete subgroup of [], SL(2,Qp). So A, C SL(2,Z[1/s]) is
T-arithmetic, and is therefore commensurable with SL(2,Z[1/t]), where t
denotes the product of the finite primes in 7.

To see that ¢ = s, it suffices to show that A, has unbounded projection
to SL(2,Q,) for all p | s. Indeed, ab has trace 2 — ¢ = 2 —r/s, and is
therefore not elliptic in SL(2,Q)). In particular, ab generates an unbounded
subgroup. ([

In fact, this strategy can handle not just rational, but all algebraic values
of ¢:
Theorem 4.9. Assume the Greenberg-Shalom Hypothesis . Letq e Q be
an algebraic number that is not an algebraic integer, and let A, denote the
corresponding Lyndon-Ullman group.
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Then Aq is free if and only if there is a Galois automorphism o €

Gal(Q/Q) such that Ag(q) 18 free and discrete.

Proof of Theorem[{.9 The proof is similar to the previous one. Let k =
Q(q). Since q¢ ¢ Oy, there exists a valuation v of k such that |q|, > 1.
Let p be the prime such that k, is a finite extension of Q, and consider
A, C PSL(2,k,). Note that A, is not discrete since a € A; NPSL(2,0,)
has infinite order. Therefore to show A, is almost-dense in a semisimple
p-adic Lie group, it suffices to show its Q,-Zariski-closure is semisimple. To
see this, it suffices to show the Lie algebra g, of the Q,-Zariski-closure of
A, is semisimple.

Note that A, is k,-Zariski-dense in PSL(2, k,) because it is not virtually
solvable. This implies the k,-span of g, is all of sl(2,k,) (because it is a
Ag-invariant Lie subalgebra), and therefore g, must itself be semisimple:
The k,-span of its solvable radical would be an ideal in the k,-span of g,.

By the Greenberg-Shalom hypothesis, A, is an arithmetic lattice in a
semisimple p-adic Lie group H. Note that H has at least two factors because
A, is not discrete in its Q,-Zariski-closure inside PSL(2, k,). In particular,
A, is a higher rank arithmetic lattice and hence not free. (]

4.3. Arithmetic of hyperbolic 3-manifolds. In this section we let G =
PO(3,1) = Isom(H?) and discuss an application to hyperbolic 3-manifolds,
i.e. to manifolds of the form K\G/A where A is a lattice. It follows from
work of Selberg, Calabi, Raghunathan, and Garland [Sel60, [Cal61, Rag67,
Gar66] that there is a number field £ such that A < G(k). One can take k
to be the trace field of A but this is not important for this application. It is
a natural and reasonably well-known question to ask whether A necessarily
contains any integral matrices. We let O denote the ring of k-integers. As
an application of our methods, we prove:

Theorem 4.10. Assume the Greenberg-Shalom Hypothesis [1.1. For any
finite volume hyperbolic 3-manifold M = H?3 /A, the subgroup I' := ANG(O},)
is infinite, commensurated by A, and Zariski-dense in G(k).

We remark here that Theorem is known unconditionally and more
generally for non-uniform lattices by exploiting simple properties of unipo-
tent elements. We formulate and prove this below for completeness. One
can take this as evidence that it is reasonable to expect Theorem to be
true.

Proof. As discussed above, there exists a number field k£ and an algebraic
group G defined over k such that A C G(k). Here A is a lattice in G(R) =
PO(3,1), so G is a form of PO(4). Since I' is finitely generated, the set
of places S of k such that there exists a matrix entry of a generator of A
with valuation > 1, is finite. It follows immediately that A commensurates
I". Since the commensurator of I' is Zariski-dense, as soon as I' is infinite,
I' itself is Zariski-dense (see Lemma and Remark . It remains to
prove that I' is infinite.
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At any place s ¢ S, we have A C G(Os). In particular, if S = @, then
I' = A and we are done. Now assume S # &. If A C Gg is indiscrete, then
I' = AN G(Og) is infinite and we are done.

Henceforth assume that A C Gg is discrete. Since PO(4) is of type Do
and any split group of type D5 is a product of groups of type A1, the group
Gs = [],c5 G(ks) splits as a product of rank one factors, say G's = [[,c; Gi.
Choose a maximal subset J C I (possibly J = I) such that pr;(A) C G
is discrete. We note that J consists of at least two factors: Since G; has
rank 1, its Bruhat-Tits building is a tree, and since A is not virtually free,
it cannot act properly discontinuously on a bounded degree tree.

We claim that A is irreducible in G ;: By maximality of J, the projection
of A to any proper subset of factors is indiscrete, so it remains to show that A
is Qp-Zariski-dense in Gj, for every prime p. Here G, denotes the product
of the p-adic factors of G, and G, is a Qp-algebraic group by restriction
of scalars as in Section [3l

Since A C G(k), its R-Zariski-closure in G(R) is defined over k (see e.g.
[Zim84, Proposition 3.1.8]). Since A C G(R) is a lattice, it is R-Zariski-
dense. Combining these two observations, we see that A is k-Zariski-dense
in G(k). Restricting scalars from k to Q, we conclude that A is Q-Zariski-
dense in (Ry/9G)(Q). Now write S, for the set of p-adic places of S. We
have

Gs, = [] 6(ks) = 1] (Ris0C)(@p)-

s€Sp s€Sp

We regard G, as a Qp-algebraic group using the product structure given
by the right-hand side. Since the diagonal embedding

Rk/@G — H Rk/QG
sES)

is defined over Q and A is Q-Zariski-dense in (Ry,oG)(Q), the Q-Zariski-
closure of A in [[,cq (Ri/oG)(Q) is exactly the diagonal. So the Q-Zariski-
closure of A in Gg, contains the diagonally embedded copy G(k). However,
since G is adjoint, it satisfies weak approximation, so G(k) is (analytically)
dense in Gg,. So the Qp-Zariski-closure of A in Gg, (which is of course
analytically closed) contains a dense set and therefore must be all of G, .
This shows that A is Q-Zariski-dense in Gg,,.

Since every factor of Gg, is defined over @, the projection Gg, — G,
is also defined over Q. It follows that the image of A in G, is also Q-
Zariski-dense. O

We now formulate and prove the known version of Theorem [£.10] for non-
uniform lattices. We thank Alan Reid for drawing this fact and its proof to
our attention. We give a statement for non-uniform lattices in all rank one
Lie groups, even though except in the case of SO(n, 1), stronger results are
known. If G is a rank one Lie group not locally isomorphic to SL(2,R) then
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it follows as above that any lattice G < G is conjugate into G(k) for some
number field k.

Theorem 4.11. Let G be a rank one Lie group not locally isomorphic to
SL(2,R) and ' < G a non-uniform lattice, then subgroup I' := ANG(Oy) is
infinite, commensurated by A, and Zariski-dense in G(k).

Proof. By results of Garland-Ragunathan [GR70], we know that for some
choice of parabolic P, I' intersects the unipotent radical U of P in a lattice.
Furthermore, we know I'N Z(U) is also non-trivial where Z(U) is the center
of U. If v € Z(U)(k) then it is elementary that for some n, we have 4" €
Z(U)(Oy) since on the center of a unipotent group, multiplication is just
addition of matrix coefficients. This suffices to prove the theorem by the
discussion the proof of the last theorem. ([

5. RANK GRADIENT

For a finitely generated group I', the rank rk(T") is the minimal number
of generators in a generating set for I'. It is interesting to consider ranks of
finite index subgroups of I'. Writing I as a quotient of a free group F, of
rank r := rk(T"), the pre-image of a finite index subgroup © C " in F). is a
free subgroup of index [I" : ©], and therefore has rank [I" : ©](rk(I") — 1) + 1.
In particular, rk(©) grows at most linearly in [I" : ©]. Given a chain of finite
index subgroups

F=rpyo2hh2r,2...,

the rank gradient of I" with respect to the chain (I'y,)y, is

o Tk(Ty) —1
rg(l, (Tn)n) := lim rer,]
Lackenby introduced rank gradient as a generalization of Heegaard gradient,
which is an invariant for 3-manifolds [Lac05]. Abert-Nikolov proved that if
the chain (T'),),, is Farber (e.g. if T',, are contained in a chain of normal sub-
groups of I" that has trivial intersection), then the rank gradient computes
the cost of the action of I' on the boundary of the coset tree associated to
the chain, i.e. the profinite space lim I /T [AN12]. In particular, the rank
gradient is stable under refining the chain (I'y),. Cost is more generally
defined for probability measure-preserving Borel actions of I', and the fized
price problem asks whether the cost of an action only depends on I' and not
on the action itself. A positive answer for many groups, including higher
rank nonuniform irreducible lattices in real Lie groups has been given by
Gaboriau [Gab00]. Abert-Gelander-Nikolov have given a positive answer
for right-angled lattices in such Lie groups, which includes the first uniform
examples [AGN1T7]. Recently, Fraczyk-Mellick-Wilkens have positively an-
swered the question for all lattices in higher rank real Lie groups [FMW23].
In all of these results, the cost is 1, which implies vanishing of the rank
gradient for any Farber sequence.
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In the context of lattices in semisimple Lie groups, oftentimes one can
find many finite index subgroups with a uniformly bounded number of gen-
erators. This is not the case for lattices in SL(2, R), since those surject onto
free groups, and so do some lattices in other rank 1 groups. However,by
combining work of Raghunathan, Tits, and Venkataramana, one can prove
that for a nonuniform higher rank arithmetic lattice I' in a Q-simple real Lie
group G, there exists k > 2 such that I' has arbitrarily small k-generated
finite index subgroups in the sense that any finite index subgroup of I" con-
tains a further finite index k-generated subgroup (see [SV05, Remark 3]).
In particular, the cost of Farber chains is always 1. Sarma-Venkataramana
have shown that one can take k = 3 [SV05]. Sarma has studied the same
problem for S-arithmetic lattices, and in particular has proven that for an
S-arithmetic lattice in SL(2, K), where K is a number field and |S| > 2, one
can take k = 3 [Sar06]. For SL(n,Z),n > 3, Lubotzky has asked whether
one can take k = 2, i.e. whether SL(n,Z),n > 3, has “arbitrarily small
2-generator finite index subgroups” [Lub86], and this was proven by Meiri
[Meil7]. The analogue of Lubotzky’s question is open for all other commen-
surability classes of higher rank lattices, including S-arithmetic ones.

Heuristically, under the Greenberg-Shalom hypothesis, for irreducible lat-
tices I' C G (where G consists of at least 2 factors) one should indeed have
k = 2, and in particular, the cost of Farber chains is always 1: Namely, it is
plausible that that a generic pair of elements generates an irreducible group,
which would have finite index by Proposition The following result shows
that one can indeed make such an argument (with & given by the number
of factors):

Theorem 5.1. Assume the Greenberg-Shalom hypothesis. Let G = |, G;
be a product of v > 2 factors as in Standing assumptions and assume
G; correspond to different places p; of Q. Here we allow p = oo as a place.
Then any irreducible lattice I' C G contains arbitrarily small r-generated
finite index subgroups.

In particular, T' = SL(n,Z[1/p]) contains arbitrarily small 2-generated
finite index subgroups.

Question 5.2. Let G and I' be as in the above theorem, and assume r > 2.
Does I' even contain a single k-generated finite index subgroup for some
k < r? Does I' admit arbitrarily small k-generated subgroups for some
k <r? E.g. for k = 3 as in the results of Sarma-Venkataramana and Sarma
mentioned above? Or even k = 2 as in Lubotzky’s question and Meiri’s
theorem?

Remark 5.3. For N > 2 and I" = SL(2,Z[1/N]), the answer to the above
question is positive under the assumption of the Greenberg-Shalom Hy-
pothesis Namely, then the Lyndon-Ullman group A;/y is a lattice in
SL(2,R) x [, 5 SL(2,Qp) (see Theorem , and therefore is a finite index
2-generated subgroup of SL(2,Z[1/N]). This shows that Greenberg-Shalom
in at least some cases implies £ = 2 even when r > 2.
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Since the rank gradient is stable under refining the chain of subgroups,
we have the following application of Theorem

Corollary 5.4. Assume the Greenberg-Shalom hypothesis, and let G be as
in Standing Assumptions with simple factors corresponding to different
places of Q, and ' C G an irreducible lattice. Then the rank gradient of T’
with respect to any Farber chain of finite index subgroups vanishes.

As mentioned above, Fraczyk-Mellick-Wilkens have proven this result un-
conditionally for higher rank lattices in real Lie groups. It seems plausible
(but we do not know) that their methods extend to the setting of lattices
as in the corollary as well.

To prove Theorem [5.1} we start with some preliminary arguments. First,
we recall some facts about Jordan projections and loxodromic elements (see
e.g. [BQI16, Chapter 6]). For a connected simple algebraic group H over
a local field of characteristic 0, every nontrivial element admits a Jordan
decomposition g = gegng, as a product of a commuting triple consisting of an
elliptic element g, a hyperbolic element gy, and a unipotent element g,. An
element g € H is called lozodromic if gy, is regular, i.e. conjugate into expa™,
where a* is the (open) positive Weyl chamber. Any loxodromic element g
is semisimple, i.e. g, = e, and is therefore conjugate to an element of the
form mexp(X) where X € at and m € Zg(A) centralizes the maximal
torus A = expa. If H is real, then for any Zariski-dense subgroup © C H,
the set Oy« of loxodromic elements is also Zariski-dense (and, in particular,
nonempty) in H (see e.g. [BQ1L6, Theorem 6.36]). If H is p-adic, this is true
under the additional assumption that every simple root of H is unbounded
on the set of Cartan projections of © (see [BQ16, Lemma 9.2]). These
existence results will be useful to us because, by the following lemma, a
loxodromic element and a generic element generate a Zariski-dense subgroup:

Lemma 5.5. Let H be a connected simple algebraic group over a local field
of characteristic 0, and let h € H be nontrivial. Assume that either

(i) h is lozodromic, or
(i) H is nonarchimedean and h belongs to a compact, open, torsion-free
subgroup that is contained in the image of the exponential map.

Then there exists a nonempty Zariski-open (and in particular, open and
dense) set S C H such that for g € S, the group (g,h) is Zariski-dense in
H.

Proof. The idea is to consider the set of elements g such that Ad(g) and
Ad(h) have no joint invariant subspace in the Lie algebra h of H. Then for

such g, as long as the Lie algebra of (g, h)Z is nontrivial, it must be all of b,
and this will imply (g, h) is Zariski-dense. However, we will actually work
with a smaller set of g that we can prove is Zariski-open.

To define this set, for g € H and 0 < d < dim b, let I4(d) denote the col-
lection d-dimensional Ad(g)-invariant subspaces of b, and let I, := Ugly(d)
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denote the collection of all proper Ad(g)-invariant subspaces of . Note that
I,(d) is a Zariski-closed subset of the Grassmannian Grg(h). Let S; be the
set of all elements g € H such that Ad(g)I,(d) N Iy(d) = @, so the comple-
ment of Sy consists of those g € H such that there exists x € Ij(d) with
gz € I (d). Note also that, as promised, we indeed have I,(d) N I} (d) = @
for all g € Sy.
Let
g H x Grd(h) X Grd(h) —H

be the projection onto the first factor. In terms of this map, we have

SS=mu({(g9,z,9x) € H x Grg(h) x Grg(h) | z,gx € I,(d)}).

Let a : H x Grg(h) — Grg(h) denote the action map a(g,x) := gz. Then
we have
Sg = mu(Graph(a) N (H x Ig(h) x 14(h))).

Using this description, we will show that S is Zariski-closed. A projection
X xY — X of varieties is a closed map (with respect to the Zariski-topology
on X xY) if Y is a projective variety, so 7y is a closed map. Of course
H x I;(h)x I4(h) is Zariski-closed, so it remains to show Graph(«) is Zariski-
closed. This is a special case of the general fact that the graph of an algebraic
map F' : X — Y to a projective variety Y is Zariski-closed in X x Y. We
have shown S, is Zariski-open, and therefore so is S = NySy.

Next, we show that S # &. For this, we use the following property of h
that holds under the assumption that either A is loxodromic or sufficiently
close to identity: Namely, there exists X € h such that I is contained in
the collection Iy of ad(X)-invariant proper subspaces of h. We prove this
by considering the cases that (i) A is loxodromic, and (ii) h is contained in
a compact open torsion-free subgroup.

In Case (i), h is conjugate by some ¢ € H to an element of the form
mexp(X), where m is elliptic and centralizes A, and X € a™ is regular.
By inspecting the action of Ad(m) and Ad(exp X) relative to the root space
decomposition of h, we see that I, exp(X) C Lexp x and also that Iexp x = Ix.
Therefore I, C I—1 exp(x)e- We can write ¢! exp(X)e = exp(Ad(c) ' X),
and therefore I, C Inq(c)-1x. This completes Case (i).

In Case (ii), we can write h = exp(X). Then of course any ad(X)-
invariant subspace is Ad(h)-invariant. For the converse, note that if H is
p-adic, we have h?" = exp(p"X) "% 1d, and

.1 n
ad(X)v = nlLIQO o (Ad(exp(p" X)) — 1d) v.
Now let V' be an Ad(h)-invariant subspace. Then V is also Ad(hP")-invariant
for any n, and by the above formula, is also ad(X)-invariant.

Finally, by a theorem of Bois [Boi09], the Lie algebra b is 1.5-generated,
i.e. for every 0 # A € b there exists B € h such that {A, B} generates b as
a Lie algebra. Further, the set of B with this property is Zariski-open (see
[Boi09l, Proposition 1.1.3]). Choose Y such that {X,Y} generates b, so that
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Ix NIy = @. Since the set of possible choices of Y is Zariski-open, we can
choose such Y that is loxodromic, i.e. Y = F+ A where A is regular and F
is elliptic centralizing the maximal torus containing A. As we commented
before, for such elements we have Ioxpy € I4. Since exp(Y') is loxodromic,
AdexpY contracts towards Iy, so that after possibly replacing Y by a large
scalar multiple Ad(expY')Ix is contained in a neighborhood of Iy disjoint
from Ix, soexpY € S.

It remains to show that for g € S, the group (g,h) C H is Zariski-dense.
Let ¢ € S and note that (g,h) is infinite (because h has infinite order),
and hence its Zariski-closure has nontrivial Lie algebra, which is of course

(Ad(g), Ad(h))-invariant. It follows that the Lie algebra of (g, h>Z is all of b,

Z
i.e. {(g,h)" is open. However, any proper Zariski-closed subgroup is nowhere

dense, so we must have (g,h) = H. O

Henceforth we will refer to the Q,,-Zariski-topology on G; simply as
the Zariski-topology, and likewise for the product Zariski-topology on G =
I1; G-

To find elements in the Zariski-open sets given by the above lemma, we
need to establish Zariski-denseness of suitable subsets of I'. This is accom-
plished by the following lemma:

Lemma 5.6. Assume the notation of Theorem [5.1 Fiz j € I and let
U C G/Gj be an open neighborhood of identity. Denote by I'; C T' the
subset consisting of elements v € I' whose projection mod G lies in U.
Then
(i) pr;(T'y) is Zariski-dense in G, and
(it) If G; is p-adic for some p, then every simple root of G; is unbounded
on the Cartan projections of prj(Fj).

Proof. Proof of (i): As U decreases, so does the Zariski-closure of pr;(T';)
in G;. By the Noetherian property of G, these Zariski-closures eventually
stabilize, so we can assume stabilization has occurred at U, and denote the
corresponding Zariski-closure by H; C G;. Then choosing V' C U symmetric
such that V2 C U, it is easy to see that sz C Hj and Hj_1 = Hj,ie. H;
is a group. Further, if v € I' is fixed, we can choose V, C U such that
YV,y~t C U. Tt follows that H; is normalized by prj(7y). Since v € I' was
arbitrary, we conclude that H; is normalized by pr;(I'), which is Zariski-
dense in Gj. Since Hj is Zariski-closed, this implies that H; is normal in
G, and since H; is infinite, we must have G;“ C H;. Finally, since Gj+ is
Zariski-dense (see Theorem [2.7)(i)), we conclude that so is Hj.

Proof of (ii): Let x;(I'j) be the set of Cartan projections of pr;(I';), and
let o be any simple root of G;. We need to show that « is unbounded
on k;([';). First note that pr;(I';) is unbounded (since any sequence of
elements whose projections converge to identity in G/G; must diverge in
Gj). Therefore £;(I';) is unbounded as well, and since the Weyl group orbit
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of a spans the dual a*, there exists a Weyl group element w € W such that
wa is unbounded on «;(I';).

By aresult of Tits [Tit66], there exists a finite extension W of W contained
in @ such that if @ € W has image w € W, then Ad(w) coincides with the
Weyl group action of w on a. After possibly conjugating by an element of
A, we can assume W is contained in the maximal compact subgroup K; of
Gj. Since I' has dense projection to G and K is open, we can choose v € I'
such that pr;(y) € wKj, say pri(y) = w1k for some k € K;. Now choose
Y € I'; converging to identity in G; and such that (wa)(k;j(vn)) — co. For
n > 1, we have ¢; (v, ') € U, so v,y 1 € Tj. Let

pr; (Tn) = lnanl;
be the Cartan decomposition of pr;, (vn). Then we simply compute
prj(’y’yn’yfl) =0 Yklpanll k@

Using that W C K, we see that the Cartan projection of prj('y'yn'y_l) is
given by

k() = @ apw.
and

1

a(w  apw) = (wa) () — oo.

O

With these preliminary arguments completed, we can start the proof of
Theorem [5.1] proper:

Proof of Theorem [5.1] Index the factors by a set of primes and possibly
oo. If there is no archimedean factor, relabel one of the finite primes to
be oco. Then for p < oo, let K, € G, be a torsion-free compact open
subgroup contained in the image of the exponential map on G, and set
K = Hp<oo K,. For any p, let ¢, : G = G/G, = H#p Gy be the quotient
mod Gp, and define the subgroup I' := I' N ¢;}(K) consisting of those
elements of I' whose projection mod G lies in K. By Lemma proo(T'x)
is Zariski-dense in G, and hence contains a loxodromic element. Let a €
'k be such that pr(a) is loxodromic.

We will now show that for every p < oo, there exists b, € I' such that

(i) (a,bp) is indiscrete mod G, and

(ii) (a,bp) has Zariski-dense projections to G and to Gp.

Assuming existence of such by, it is easy to see (a, b, | p < 00) is irreducible in
G. Indeed, the projections mod G), are indiscrete for p < oo by Property (i).
The projection mod G is indiscrete because goo(a) belongs to the compact
torsion-free subgroup K. Finally, projections to any factor are Zariski-dense
by Property (ii).

So it remains to establish existence of elements b, € I" with the above
Properties (i) and (ii). By Lemma 5.5 above, for every factor G, (including
G ) there exists an open dense set Sy C Gy such that for any g, € Sy,



THE GREENBERG-SHALOM HYPOTHESIS 22

the group (g, pry(a)) is Zariski-dense in Gy. For every p < oo, the set
H#p Sy C H#p Gy is open and dense, so we can choose g, € H#p Se
sufficiently close to identity so that iterated commutators of g, and g,(a)
converge to identity in G/G). Since the subsets Sy C Gy, ¢ # p, are open,
there is an open neighborhood V}, of g, € [], 2p Gy such that these properties
hold for any element of V,,. To summarize, we have that for any g € V), the
group (g, gp(a)) is indiscrete in G/G,, and has Zariski-dense projection to
Gy for all £ # p.

Since I" has dense projection to Hg#p Gy, we can choose choose 7, € T
such that g,(vp) € V,. Further choose W), > e an open neighborhood of
identity in G/G) such that g,(y,)W, C V,. Let T, := I' N g, *(W),) consist
of those elements of I' whose projection mod G, lies in W),

We now consider elements b, of the form ~,n,, where n, € I',. For such
elements, the projection to G lies in S, so (a, b,) has Zariski-dense pro-
jection to Go. Further, iterated commutators of ¢,(b,) and g,(a) converge
to identity in G /G, and they cannot terminate since then (a,b,) would be
nilpotent and in particular not Zariski-dense in GG,. This establishes both
claimed Properties (i) and (ii) of b, except the Zariski-denseness of the pro-
jection to G, so we will now show we can choose b, to guarantee this as
well.

This last property exactly means that we require pr,(b,) € S,. On the
other hand, the possible choices of pr,,(b,) are among pr,(v,) pr,(W}). This
latter set is Zariski-dense by Lemma%m (applied with U = W,,), and since
Sp is nonempty and Zariski-open, we have S, Npr,(v) pr,(Wp) # @, so that
there exists a satisfactory choice of b,. O

6. COHERENCE

Recall the following definition of coherent groups:

Definition 6.1. A finitely presented group I' is coherent if any finitely
generated subgroup of I' is finitely presented.

Free groups and surface groups are coherent, as are abelian and, more
generally, polycyclic groups. Scott has shown 3-manifold groups are coher-
ent [Sco73|, and since then, coherence has emerged as one of their salient
properties. On the other hand, F5 x Fj is incoherent: Baumslag-Roseblade
have proved a subgroup of F» x Fj is finitely presented if and only if it is a
finite extension of a finite product of finite rank free groups, and that there
are many finitely generated subgroups that are not of this form [BR&84].

See [Wis2()] for a survey of coherent groups, as well as many open prob-
lems. The class of coherent groups is not well-understood: For example,
Serre famously asked whether SL(2,Z[1/p]), and more generally GL(2,Q),
are coherent [Ser74]. Below we give a positive answer for the former and
indeed for SL(2, Q) assuming the Greenberg-Shalom hypothesis. (Note how-
ever that SL(4,Z) is incoherent as it contains the incoherent group Fh x Fb.
It is unknown whether SL(3,Z) is coherent.)
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The relevance of the Greenberg-Shalom hypothesis to coherence of lat-
tices is that by Proposition irreducible lattices in products do not have
many subgroups: Namely either a subgroup is not irreducible or it is also
a lattice and therefore has finite index. In the following case, we have suf-
ficient control over reducible groups that we can conclude they are finitely
presented:

Theorem 6.2. Assume the Greenberg-Shalom Hypothesis [I.1. Let S be a
(nonempty) finite set of places of Q and either assume all places are finite
or that there is one infinite and finite place in S. Set G := PGL(2,Q;s) and
G := Gg. Then any S-arithmetic lattice A C G is coherent.

Now we prove Theorem

Proof. Let I' C A be finitely generated. Let H denote the Q-Zariski-closure
of I'. If H is a proper subgroup then it is solvable. In the case when we have
one real and one finite place, this implies that I' is either virtually abelian
or virtually contained in a Baumslag-Solitar group BS(1,p). In either case,
I' is finitely presented and we are done. So we can assume I is Q Zariski
dense and so all projections are Zariski dense.

Choose a minimal subset 7' C S (possibly T' = S) such that pry(I') C Gr
is discrete. Then pr;(T') is irreducible in G ;. If |T'| > 2, then by Proposition
I is an irreducible lattice in G and hence is finitely presented, and the
proof is complete.

It remains to consider the case that I' projects discretely to a factor Gg,
which is either PGL(2,R) or PGL(2, Q). In either case, all discrete, finitely
generated subgroups are finitely presented: In PGL(2, R), any such subgroup
is a surface group or is virtually free. In PGL(2,Q,), every such group is
virtually free. O

Remark 6.3. It is clear from the proof that something more general can be
proven by the same argument. For example, we can consider number fields
other than Q if we assume all places are finite. A similar argument may
work for (some) other number fields if we allow one infinite place and one
finite place. However, that restriction is really needed as it is known that
SL(2,Z[1/n]) is not coherent if n is composite [Ser74].

This also has implications for a fundamental question about coherence, to
our knowledge first explicitly posed by Wise [Wis20, Problem 9.16], namely
whether coherence is a geometric (i.e. quasi-isometry invariant) property?
We note that Wise already explicitly hedges against this.

Corollary 6.4. Assume the Greenberg-Shalom hypothesis. Then coherence
18 not a quasi-isometry invariant.

Proof. Let p, q be distinct primes and consider lattices in G := PGL(2, Q) x
PGL(2,Qq). All such lattices are cocompact and hence quasi-isometric. By
Theorem the irreducible lattices in G' are coherent. On the other hand,
any lattice in PGL(2,Q,) or PGL(2,Qy) is virtually free (of rank > 1),
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so G admits reducible lattices that are products F,, x F), of free groups
(with m,n > 1). These are incoherent by the above-mentioned result of
Baumslag-Roseblade [BR&4]. O

7. MARGULIS-ZIMMER CONJECTURE

A major motivation for Greenberg-Shalom’s question is the following con-
jecture advertised by Margulis-Zimmer in the late ‘70s, seeking to classify
commensurated subgroups of higher rank lattices A. Here we say I' C A is
commensurated if A C Comme(T).

Conjecture 7.1 (Margulis-Zimmer, see [SW13]). Let G be a semisimple
algebraic group defined over a number field k£ and S' a finite set of valuations
of k. Assume G has higher S-rank. Assume A = G(Og) is an S-arithmetic
lattice in G, then any commensurated subgroup of A is either finite or S’-
arithmetic for some S’ C S.

Here, the S-rank of G is the sum of the k,-ranks over all valuations v € .S,
and G is said to have higher S-rank if its S-rank is at least 2.

Remark 7.2.

(1) For example, if I' is a commensurated subgroup of SL(n, Z[1/p]) (where
n > 2), then I' is predicted to be either finite, finite-index, or commen-
surable to SL(n,Z).

(2) Conjecture is motivated by and strengthens Margulis’ Normal Sub-
group Theorem.

(3) Question and Conjecture are closely related: For example, if
I' C G(Og) is a commensurated subgroup and I'NG(O) is infinite, then a
positive answer to Question proves I intersects G(Q) in a lattice. S’-
arithmeticity of I" then follows from Venkataramana’s result (see [LZ01,
Proposition 2.3]) that the only intermediate subgroups between G(O)
and G(QOg) are S’-arithmetic for some S’ C S, which proves Conjecture
for such groups.

Using well-chosen unipotent generating sets, Venkataramana has proven
the Margulis-Zimmer Conjecture for arithmetic lattices I' = G(Z) in sim-
ple groups defined over Q [Ven87]. Shalom-Willis have proved Conjecture
in more instances, including the first that are not simple [SW13]. Their
proof crucially relies on fine arithmetic properties for lattices in these groups,
namely bounded generation by unipotents. As it is now known that bounded
generation is not a common property for higher rank lattices [CRRZ22], dif-
ferent approaches are needed. The results in [FMvI.22] yield partial results
on this conjecture and the first that do not depend on unipotent elements,
see Corollary 1.5 in that paper. This is the only prior work on Conjecture
L1

We now deduce a special case of Conjecture assuming the Greenberg-
Shalom hypothesis. Namely we deduce the case where G has at least two
factors, at least one of which is non-archimedean. The deduction of this case
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of the Margulis-Zimmer conjecture from the Greenberg-Shalom hypothesis
is quite simple modulo arguments we have already made. The existence of
at least two factors is essential to the argument, but the requirement of a
non-archimedean one can be removed if the Greenberg-Shalom hypothesis
is strengthened to cover approximate groups (see Question , but we do
not pursue this here.

Let G = [[; G, is as in Define the rank of G by tk(G) = > .., ki-
rk(G;(k;)) and assume that rk(G) > 2. Let Gy, denote the product of
G;’s over all non-archimedean factors. We establish the following case of

Conjecture [7.1}

Theorem 7.3. Assume the Greenberg-Shalom hypothesis and suppose Gpq
is non-trivial and |I| > 2. Let A denote an irreducible lattice in G, and
' C A be an infinite subgroup commensurated by A. Then there exists J C I
such that pr;(T') (isomorphic to T under pry) is a lattice in G .

Proof. If T is irreducible, it is a lattice by Proposition

Assume therefore that I' is reducible. Hence there exists a minimal subset
J C I such that pr;(I") is discrete. Irreducibility of A implies that pr;(A)
is dense in G ;. Note also that pr; is injective on A, and hence on I'. Thus,
pr;(I') € G, is an infinite discrete subgroup commensurated by pr;(A),
where the latter is almost dense. Then the Greenberg-Shalom hypothesis
implies that pr;(I') C pr;(G) is a lattice. O

One might want to reverse this implication, but it is not immediate. If
one assumes that I' < G as in Greenberg-Shalom’s Question [1.1]is contained
in an arithmetic lattice G(O) C G (where O is the ring of integers of a
number field k), then it follows from an old argument of Borel that the
commensurator A := Commg(I") is contained in the G(k) see [Bor66] or
[Zim84), Prop. 6.2.2]. (In Zimmer this is stated for arithmetic lattices, but
the only property used is that I' is a Zariski-dense subgroup of an arithmetic
lattice). Then A contains finitely generated subgroups that are dense in G
and contained in S-arithmetic lattices G(Og), where S is a finite set of places
of k. It is, however, not at all clear in general how to force A to contain
an S-arithmetic lattice without already proving I' is a lattice. In this sense,
the Greenberg-Shalom hypothesis is a strengthening of a special case of the
Margulis-Zimmer conjecture.

8. POSITIVE CHARACTERISTIC AND AUTOMORPHISM GROUPS OF TREES

Going beyond semisimple Lie groups, one can study discrete irreducible
subgroups of automorphism groups of trees. Their irreducible lattices are
known to exhibit rigidity by the work of Burger-Mozes [BM00a, [BMOOD].
Let I be the fundamental group of a surface of genus at least 2 and let T;
for i =1,...,k be a bounded valence simplicial tree.

In this setting we have the following questions due to Fisher-Larsen-
Spatzier-Stover:
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Question 8.1 (Fisher-Larsen-Spatzier-Stover [FLSS18]).

(1) Does there exist p: I' — Aut(T} x - -- x T}) with discrete image?
(2) Does there exist p as in (1) where p takes values in a product Gi X
- X Gy where each G; is a rank one simple algebraic group over a
non-archimedean local field?
(3) Can T be faithfully represented into PGL(2, K') for some global field K
of positive characteristic?

If there is an action as in (1), then on a subgroup of finite index, p is
the diagonal embedding from homomorphisms p; : I' — Aut(7;). Question
8.1(2) is only implicit in [FLSS18]. In [FLSS18], it is shown a positive
answer to the third question gives a positive answer to the first and second.
Questions [8.1(1) and (2) are clearly related to Corollary 4.2 We remark
here that a negative answer to the analogue of Greenberg-Shalom’s question
for automorphism groups of trees is given by Burger and Mozes in [BM96),
Proposition 8.1], and that one can also construct irreducible subgroups in
products of trees as done by e.g. the third author and Huang in [HM24].
However, Question [8.1(1) is still open as is the corresponding question for
finitely generated free groups.

We show that the Greenberg-Shalom hypothesis for groups defined over
local fields of positive characteristic implies a negative answer to (3). This
does not completely resolve (2). The main result of [FLSS18] produces
a surface group in PSL(2, F) where F' is a positive characteristic field of
transcendence degree 2. If the answer to (3) is negative, then that result is
sharp in that there is no representation into a positive characteristic field of
transcendence degree one.

Proposition 8.2. If the Greenberg-Shalom hypothesis is correct for G =
PGL(2,k) where k is a local field of positive characteristic (replacing the
notion of almost denseness by containing the cocompact group G*), then
Fisher-Larsen-Spatzier-Stover’s Question 3) has a negative answer.

We first give some indication of the proof strategy and introduce necessary
background to carry out this strategy. Suppose there exists a surface group
A C PGL(2, K) for some global field K of positive characteristic. Set G :=
PGL(2). Since A is finitely generated, there exists a finite set of places S of
K such that A C Gg is discrete. Since PGL(2, K ) cannot contain a discrete
surface group, we can assume that |\S| > 2 and that the projection of A to
any collection of subfactors is not discrete.

We will now briefly indicate the idea for the rest of the proof. After
some initial reductions, we can assume A is Zariski-dense. By fixing a place
s and a compact open subgroup K; C G, we can define I's := AN K,
which is commensurated by A and is discrete and Zariski-dense in Gg\,. If
the closure of A in Gg\, contains Ggf\s, then by the positive characteristic
analogue of the Greenberg-Shalom hypothesis, I's projects to a lattice in
Gg\s, s0 that by the same variation of Venkataramana’s lemma as in the
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proof of Proposition[d.1] A is a lattice in Gg, but this is impossible as surface
groups are not lattices in totally disconnected groups.

To prove A C G S\s contains G;r\s, one needs a strong approximation re-
sult in positive characteristic. Strong approximation in this setting is due to
Pink [Pin98| [Pin00] (strengthening earlier work by Weisfeiler [Wei84]), but
unlike in characteristic zero, one does not merely need to pass to universal
covers, but instead to so-called ‘minimal quasi-models’. We will now intro-
duce this terminology (in the simplified setting of simple groups, see also
[LS03, pp. 416-17]).

Let G be a connected, absolutely simple, adjoint linear algebraic group
over a global field L, and write G := G(L). Let I' C G be finitely generated
and Zariski-dense. Suppose now K C L is another global field, and H is
a connected, absolutely simple, adjoint linear algebraic group over K, and
¢ H xg L — G is an isogeny such that I' C ¢(H(K')). Here the notation
H x g L means that we extend scalars from K to L, i.e. we view the K-
algebraic group H as an L-algebraic group. Then (K, H, ¢) is called a weak
quasi-model of (L,G,T"). If for any weak quasi-model (K, H, ¢) of (L,G,T'),
we have K = L and ¢ is an isomorphism, then (L, G,T") is called minimal.
For any weak quasi-model, the map ¢ : H — G is injective, so that I" can be
identified with its pre-image in H. It follows that we can replace (L,G,T")
by (K,H,T). Pink proves this process has to terminate and therefore that
minimal weak quasi-models always exist:

Theorem 8.3 (Pink [Pin98, Theorem 3.6]). Any triple (L,G,T") as above
admits a minimal weak quasi-model (K,H, ). In addition, K is unique,
and H and ¢ are unique up to unique isomorphism.

We will also have occasion to have the following result for minimal quasi-
models for commensurated subgroups:

Proposition 8.4 (Pink [Pin00, Proposition 3.10]). Let (L,G,T") be as above
and minimal. Let A C T be a commensurated subgroup that is Zariski-dense
in G. Then (L,G, A) is also minimal.

Now we turn our attention towards strong approximation. Let (L,G,T")
be as above and minimal. Let S be the set of places of s of L such that the
image of I' in G4 := G(Ls) is unbounded. Denote by Af the ring of adeles
of L away from S, and let 7 : G — G denote the universal cover. Since ker 7
is central, the commutator map on G descends to G x G — G. Let I be the
subgroup of G = @(L) generated by the image of I under this commutator
map. We are now in position to state Pink’s strong approximation result:

Theorem 8.5 (Pink [Pin00, Theorem 0.2]). Let (L,G,T') be as above and

minimal. Then the closure of I is open in G(A?Y).
We can now prove Proposition [8.2}

Proof. Suppose there exists a discrete surface group I' C PGL(2, K) for some
global field K of positive characteristic, which is necessarily Zariski-dense
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(since otherwise its Zariski-closure would be virtually solvable). By Pink’s
Theorem there exists a minimal weak quasi-model (F, G, A) where F' C
K is a subfield and G is an absolutely simple adjoint group over F', and
there is a K-isogeny ¢ : G xp K — PGL(2) with A C ¢(G(F')). As above,
consider the set S of places s of F' such that I is unbounded in G := G(F5%).
Since I' is finitely generated, S is finite, and I is discrete in G5 := [], g Gs.

We claim that |S| > 2. We must have S # @, simply because a surface
group is infinite and therefore cannot be discrete in a compact group. Fix
s € S, and extend s to a valuation on K, so that ¢(G(Fs)) C PGL(2, Kj).
Then Gy := G(F;) has Fyrank 1: If A = (FX)¢ C G(F,) is a maximal
F,-split torus, then A xp, K, = (K*)% is a K,-split torus in G(K,). Since
G(K,) is isogenous to PGL(2, K;), we must have d < 1. Since G has Fjs-
rank 1, its Bruhat-Tits building is a tree. Since a surface group cannot act
properly on a tree, I' C G5 cannot be discrete. This shows that there must
be at least one additional place s’ € S, i.e. |S| > 2.

Now fix s € S and compact open subgroups Us C G5 and Ug\s C Gg\,-
Let T's :=T'N (Us x Gg\s) and g\ := T'N (G5 X Ug\s). Both I's and T'g\g
are commensurated by I'. It is easy to see both I's and I'q\, are Zariski-
dense in G: Since the argument is entirely the same for both, we will only
include it for T'y. Since G = G(F') is Noetherian over F, the Zariski-closure
of finite index subgroups of 'y stabilizes as the subgroups decrease. By
possibly shrinking Uy, without loss of generality we can assume the Zariski-
closure ITSZ C @G is invariant under passing to finite index subgroups of
I's. For v € T', we can choose a finite index subgroup I', C I's such that
71177_1 C I's. It follows that ITSZ is normalized by . Since v € T' was
arbitrary and I' C G is Zariski-dense, FSZ is normal in G. But since G is
simple, we must have ITSZ =G.

Since I'q\s C G is Zariski-dense, and minimality of (F,G,I") passes to
commensurated Zariski-dense subgroups of I' (see Pink’s Proposition ,
Pink’s Strong Approximation Theorem applies to (F,G,I'g\,). Since s is
the only place of F' such that I'g\; has unbounded projection to Gs, strong

approximatNion shows that the closure of Fig\s in (AG;(A%) is open. The natural
projection G(A%) — G\, is open, so the closure of F{S’\s in the latter is also

open, and hence so is the closure of I'. Then I” is open and unbounded
in G s\s> S0 by the Tits-Prasad Theorem ' =G s\s- (We note here
that in Section [2] we considered only fields of characteristic zero, but the
Tits-Prasad theorem is valid in arbitrary characteristic). By applying the
universal covering map and using that the image of the universal covering
map is precisely Gg\s, we see that T’ contains Gg\s.

Since I's is discrete and Zariski-dense in G\ s and commensurated by the
group I' whose closure contains Gg\s, the positive characteristic analogue
of the Greenberg-Shalom hypothesis implies I's C Gg\, is a lattice. The
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variation on Venkataramana’s lemma given in the latter half of the proof of
Proposition then applies and shows I' C G = G5 X G5\ is a lattice. But
surface groups can only be lattices in groups isogenous to SL(2,R), and in
particular, not in a product of algebraic groups defined over local fields of
positive characteristic. This is a contradiction. O

9. AUTOMORPHISM GROUPS OF TREES

In this section we prove an improvement on [FLSS18, Theorem 15] that
we used in the proof of Corollary The improvement is minor and the
main ideas are present in [FLSSI8| but we need a stronger statement than
given there and expect it to be needed in other applications.

Theorem 9.1. Suppose that A is a torsion free hyperbolic group that is not
free. Let
X=Tx---xT,

be a product of finite-valence trees, set G; == Aut(T;), and G := [[ G;. Let
pr; denote the projection of G onto G;. If p: A — G is a discrete and faithful
representation, then there are at least two values of i such that p; := pr;op s
faithful and has indiscrete image. Moreover, suppose p1,...,p, are faithful
representations and the other p; are not. Then the representation

pLx - xpri A= G X x G

is discrete and faithful. If we further assume py X - -+ X pyp is minimal for the
property of having discrete image, then for all i, p;(A) does not fix a point
at infinity on T;.

Proof. The only new statement is the last one concerning no fixed points
at infinity. Assume the action on one tree T3 fixes a point at infinity, that
all p; are faithful, that » > 1 and that (p2 X --- X p,)(A) is not discrete. If
we fix a point n at infinity on 77, we have a height, or Busemann, function
by, : Ty — Z. 1t is easy and standard that if p;(A) fixes n and z¢ € T is
chosen such that b,(zo) = 0, then the map

B, AN — Z
A — by (Azo)

is a homomorphism.

Let K = ker(B,)). Observe that since G has no parabolic elements, any
A € K fixes a point in T7. Now fix a vertex v in Ty x --- x T}. and let A be
the stabilizer of v in A under the action defined by p2 X - -+ X p,.. Note A is
non-trivial by hypothesis.

It suffices to show that K NA is nonempty and this is done almost exactly
as in [FLSS18]. Consider x € K and y € A. As K is normal in A, the
commutators [z, y"] = z(y"x "y~ ™) belong to K for any n € Z. It suffices
to find values of n such that the commutator also belongs to A. As in
[FLSS18|, we see that since y fixes v, the points y"z ly™™ v = y"z ! - v
all lie in a ball centered at v of radius d(v,x~! - v). Since all trees are
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finite valence, this ball is a finite set and so there are n1 # no € Z such that
y“a~l.v =y~ ! v this implies zy™ ™22~ 'v = v, so that [z, y™~"2] € A.

This contradicts discreteness of (p; X -+ x p,)(A). O
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