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Abstract. We study a question of Shalom concerning arithmeticity of
discrete subgroups of semisimple Lie groups with dense commensurators.
We answer Shalom’s question positively for normal subgroups of lattices.
This generalizes a result of the second author and T. Koberda.
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1. Introduction

1.1. Main result. Let G be a real or p-adic semisimple Lie group with finite
center and without compact factors, or a finite product of such groups. More
precisely, we consider G “ Gpkq where k is a local field of characteristic zero
and G is a semisimple algebraic group defined over k and also products of
groups of this type. Let Γ Ď G be a discrete subgroup with commensurator
∆. For lattices, a landmark theorem of Margulis shows that ∆ detects
arithmeticity of Γ:

Theorem 1.1 (Margulis). Let G be as above and let Γ be an irreducible
lattice in G. Then Γ is arithmetic if and only if ∆ is dense in G.

It is natural to speculate that this theorem holds more generally, assuming
only that Γ is discrete and Zariski dense. This question was first asked by

Department of Mathematics, Indiana University Bloomington, Blooming-
ton, IN, USA

School of Mathematics, Tata Institute of Fundamental Research, Mumbai,
India

Department of Mathematics, Statistics, and Computer Science, University
of Illinois at Chicago, Chicago, IL, USA

Date: June 29, 2022.

1



commensurators of normal subgroups 2

Greenberg for SOpn, 1q in 1974 and later asked more generally by Shalom
[Gre74, Mj11].

Question 1.2 (Greenberg-Shalom). Let G be a semisimple Lie group with
finite center and without compact factors. Suppose Γ Ď G is a discrete,
Zariski-dense subgroup of G whose commensurator ∆ Ď G is dense. Is Γ an
arithmetic lattice in G?

Greenberg has given a positive answer for finitely generated subgroups of
G “ SLp2,Rq [Gre74]. Building on work by Leininger-Long-Reid [LLR11],
Mj gave a positive answer for finitely generated subgroups of SLp2,Cq [Mj11].
Koberda-Mj have given a positive answer for certain normal subgroups Γ of
lattices in rank 1, e.g. those with abelian quotients [KM21, KM19]. For
all other cases of G, as well as general infinitely generated subgroups of
the above, Question 1.2 is open. Shalom’s question is closely related to a
number of other problems which will be discussed in Section 1.3 below. More
generally it is known that any group as in the question has full limit set. This
was observed by Greenberg in SOpn, 1q and Mj in general [Gre74, Mj11]. In
that context it is natural to look at the case of normal subgroups of lattices,
which are a robust source of groups with full limit set. Other constructions
of groups with full limit set are possible, but normal subgroups of lattices
seem a better candidate for having large commensurator. Our main result
is a positive answer to Question 1.2 for normal subgroups of lattices:

Theorem 1.3. Let G be a finite product of almost simple algebraic groups
defined over local fields of characteristic zero, and let Λ Ď G be an irre-
ducible lattice. Suppose Γ Ď Λ is an infinite normal subgroup with dense
commensurator ∆ Ď G. Then Γ is an arithmetic lattice and has finite index
in Λ.

This implies a suitable version for reducible lattices, see Theorem 5.1.
With a few modifications to the proof, we obtain the same result when G
is defined over a local field with positive characteristic when Λ is either
uniform or arithmetic, see Theorem 3.1. If G has higher rank, then Γ has
finite index in Λ by Margulis’ Normal Subgroups theorem. We note here
that we do not give a new proof of that theorem here and we use it in our
proof.

1.2. Outline of proofs. We start by proving that ∆ also commensurates
Λ (Section 2.2). The rest of the proof is based on the study of a relative
profinite completion L of ∆ with respect to its commensurated subgroup Γ,
the similarly defined relative completion H of ∆ with respect to Λ, and the
natural map LÑ H between them.

We study the kernel N of this map in several steps. First we quotient
by the normal closure C (in L) of Γ X N , and we show that L{C Ñ H is
(up to finite index) a central extension (Subsection 2.3). Then we study
the (continuous) cohomology class of this extension in H2pH,N{Cq, and
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we show it must be torsion. This readily implies that N{C must be finite
(Section 2.5).

Finally, in Section 2.6, we use a direct argument to show that C is compact
and since N{C is finite, N is also compact. This immediately implies that
Λ{Γ is finite.

In Section 3, we discuss the required modifications for the proof in positive
characteristic. The proof is largely the same, except where we use finite
generation of Λ. Instead, we use a structural result of Lubotzky that such a
lattice is a free product of a free subgroup and lattices in unipotent groups.
This description is precise enough that it allows us to circumvent the use of
finite generation.

In Section 4 we establish a technical result on subgroups of S-arithmetic
lattices, which generalizes a result of Venkataramana (with essentially the
same proof).

1.3. Motivations and connections. In this subsection we explain some
connections between Shalom’s Question 1.2 and other well-known problems.
In the first subsubsection we recall a conjecture of Margulis and Zimmer
and explain Shalom’s original motivation for his conjecture. In the second
subsubsection, we point to a newer set of connections which to the best
of our knowledge have not previously appeared in the literature. We only
sketch these and leave further details to our forthcoming article with Nic
Brody [BFMvL22].

1.3.1. Margulis-Zimmer Conjecture. A major motivation for Shalom’s ques-
tion is the following conjecture advertised by Margulis-Zimmer in the late
‘70s, seeking to classify commensurated subgroups of higher rank lattices Λ.
Here we say Γ Ď Λ is commensurated if Λ Ď CommGpΓq.

Conjecture 1.4 (Margulis-Zimmer, see [SW13]). Let G be a semisimple
algebraic group defined over a global field k and S a finite set of valuations
of k. Assume G has higher S-rank. Then any commensurated subgroup of
the S-arithmetic lattice Λ is either finite or S1-arithmetic for some S1 Ď S.

Here, a global field is a number field or a finite extension of a function
field Fpptq, and the S-rank of G is the sum of the kν-ranks over all valuations
ν P S, and G is said to have higher S-rank if its S-rank is at least 2.

The connection to Shalom’s question occurs as soon as there are at least
two valuations, and one of them is non-Archimedean. To be most transpar-
ent, we assume Λ “ SLpn,Zr1{psq, but this explanation easily generalizes.
Let Γ ă Λ be a commensurated subgroup contained in SLpn,Zq. Then Γ is
a discrete subgroup of SLpn,Rq and in the latter group, its commensurator
Λ is dense. The Margulis-Zimmer conjecture in this case predicts that Γ is
either finite, or of finite index in SLpn,Zq.

Using well-chosen unipotent generating sets, Venkataramana has proven
Conjecture 1.4 for arithmetic lattices Γ “ GpZq in simple groups defined over
Q [Ven87]. Shalom-Willis have proved Conjecture 1.4 in more instances,
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including the first that are not simple [SW13]. Their proof crucially relies
on fine arithmetic properties for lattices in these groups, namely bounded
generation by unipotents. This is the only prior work on Conjecture 1.4.
Our results provide some new, partial evidence for the Margulis-Zimmer
conjecture in some special cases.

1.3.2. Irreducible subgroups of products. In this subsubsection, we pro-
vide some indications of results with Nic Brody that will appear later in
[BFMvL22]. The general motivation here is to study discrete subgroups of
products that project indiscretely to the factors. The only published refer-
ence we know that mentions questions of this type is [FLSS18], though that
article only mentions much weaker questions than the following:

Question 1.5. Let G1 and G2 be semisimple groups over local fields and
Λ ă G1 ˆG2 a discrete subgroup with both projections dense. Is Λ in fact
an irreducible lattice in the product?

At first glance, this question seems overly strong. We state an easy propo-
sition that shows that it is a natural generalization of Shalom’s question.

Proposition 1.6. Let G1 and G2 be semisimple algebraic groups over local
fields with G2 totally disconnected. Let Λ ă G1 ˆ G2 be discrete with both
projections dense. Then there is a subgroup Γ ă Λ which projects discretely
to G1 and Γ is commensurated by Λ.

The proposition is easy to prove by picking Γ to be the intersection of
Λ with a compact open subgroup of G2. In fact the proposition really
only requires that G1 and G2 be locally compact topological groups with
G2 Hausdorff and totally disconnected (then G2 contains a compact open
subgroup). We note here that in the proof of Proposition 1.6, the group Γ we
construct is most likely infinitely generated and not normal in any subgroup
of Λ. So no existing work on Shalom’s question 1.2 bears on Question 1.5.

The difficulty in applying this approach is to guarantee the density of
projections. Of course if either projection is discrete, Λ is best studied as
a discrete subgroup of that factor rather than the product. So it is natural
to assume the projections are indiscrete, in which case it is often also easy
to prove they are dense. This will allow us to see that a number of natural
questions would be answered by a positive answer to Shalom’s question.
These include

(1) the non-existence of surface groups as discrete subgroups of products
of rank one p-adic groups; this has applications to the arithmetic of
three manifold groups [FLSS18];

(2) the non-existence of discrete free groups with dense projections in
many products, answering a question asked by Yves Benoist;

(3) an old question of Lyndon and Ullman on groups generated by
parabolics in SLp2,Rq, recently made a conjecture by Kim and
Koberda [LU69, KK19].
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Detailed explanations of all these connections and some others will appear
in the forthcoming paper with Brody [BFMvL22].
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2. Proofs

2.1. Schlichting completions. We start by introducing a main tool in
our proofs, so-called Schlichting completions. See [SW13, Section 3] for
more details on the facts reviewed here.

Definition 2.1. Let Υ be a countable group and Θ ă Υ a commensurated
subgroup. The Schlichting completion Υ{{Θ is defined to be the closure of
Υ ă SymmpΥ{Θq in the topology of pointwise convergence.

Then Υ{{Θ is a totally disconnected, locally compact, Hausdorff, second
countable group. Υ maps onto a dense subgroup of Υ{{Θ with kernel the
normal core of Θ in Υ, and the image of Θ in Υ has compact open closure.
If in addition Υ is finitely generated, then Υ{{Θ is compactly generated.

Example 2.2. The Schlichting completion of Υ :“ GpZr1{psq with respect
to Θ :“ GpZq is Υ{{Θ “ GpQpq. For us, ∆ is S-arithmetic, and ∆{{Λ has
finite index in GpkSq.

In the case that Υ is finitely generated, Υ{{Θ can be realized as a group
of automorphisms of a locally finite graph, namely its Cayley-Abels graph
(with respect to a compact generating set). Its construction is due to Abels
[Abe74]. Our discussion follows [Mon01, 11.3]. Let H be a totally discon-
nected, compactly generated Hausdorff topological group. Then H has a
compact open subgroup K. We fix a bi-K-invariant compact symmetric
generating set C. Then the Cayley-Abels graph G “ GpH,C,Kq of H with
respect to C and K is defined to have vertex set H{K and edges between
hK and hcK for all h P H and c P C. By compactness of C, this graph
is d-regular for d “ |C{K| ă 8, and since C generates H, it is connected.
Further, H acts on G by graph automorphisms with vertex stabilizers given
by conjugates of K. In particular, this action is isometric and hence proper.
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If Υ is a finitely generated group with commensurated subgroup Θ, then

K :“ Θ
H

is a compact open subgroup. With this choice, the Cayley-Abels
graph has vertex set H{K “ Υ{Θ.

2.2. Arithmeticity of Λ. As remarked in the introduction, since Γ is nor-
mal in Λ and Λ is an irreducible lattice in G, Margulis’ Normal Subgroups
Theorem allows us to assume that G is a rank one simple group. We make
this assumption without further comment for the rest of the paper. We start
by proving:

Proposition 2.3. Under the assumptions of Theorem 1.3, ∆ commensu-
rates Λ. In particular, Λ is arithmetic.

Proof. The second part follows from the first by Margulis’ commensurator
rigidity theorem. For the first claim, let δ P ∆. We claim that Λ normalizes
a finite index subgroup of ΓX Γδ. This is clear if Γ is finitely generated (so
that it only admits finitely many subgroups of a given index), but in general
we argue as follows:

The group Λδ :“ xΛ, δy is finitely generated and has commensurated
subgroup Γ. Fix a Cayley-Abels graph of Λδ{{Γ with vertex set Λδ{Γ. Then
ΓX Γδ is the pointwise stabilizer in Λδ of teΛδ, δΛδu Ď Λδ{Γ. Let R be the
distance between these points, and let Γ1 be the pointwise stabilizer of the
ball of radius R centered at eΛδ P Λδ{Γ (with respect to the graph metric
on the Cayley-Abels graph).

Note that the stabilizer (in ∆) of a point in ∆{Γ only depends on its image
in ∆{Λ: Indeed, if δ P ∆ and λ P Λ, then the stabilizer of δΓ is just Γδ,
whereas the stabilizer of δλΓ is Γδλ “ Γδ. Therefore Γ1 is just the pointwise
stabilizer of all fibers that are within distance R of Λ{Γ (which is the fiber
over eΛ P Λδ{Λ), and since this set of fibers is Λ-invariant, Λ normalizes Γ1.

Since Λ normalizes Γ and Γ1, we can consider the conjugation action
Λ Ñ AutpΓ{Γ1q. Since AutpΓ{Γ1q is finite, a finite index subgroup Λ1 Ď Λ
leaves pΓ X Γδq{Γ1 invariant, so that Λ1 normalizes Γ X Γδ. Likewise, there
is a finite index subgroup Λ2 Ď Λδ that normalizes Γ X Γδ. However, since
ΓXΓδ is a discrete Zariski-dense subgroup of G, its normalizer NGpΓXΓδq is
also discrete, and hence so is the subgroup xΛ1,Λ2y of NGΓ1. Since xΛ1,Λ2y
contains a lattice and is discrete, it is itself a lattice. Therefore Λ1 and Λ2

are both finite index in xΛ1,Λδy and hence are commensurable. �

Arithmeticity of Λ lets us reduce to the case where ∆ is an S-arithmetic
lattice by way of the following generalization of a result of Venkataramana
(see [LZ01, Proposition 2.3]):

Lemma 2.4. Let Θ Ď Gpkq be a subgroup containing Λ whose projection
to Gpksq is bounded for almost all places s, and let S be the (finite) set of
places where the projection of Θ is unbounded. Then Θ is S-arithmetic.



7 fisher, mj, and van limbeek

Venkataramana’s result is stated in [LZ01] in characteristic zero and under
the assumption that S contains an archimedean place. The proof of the
above lemma is rather technical and we postpone it until Section 4.

Remark 2.5. By the above lemma, for any δ P ∆zΛ, the group xΛ, δy is
S-arithmetic for some finite set of places S. We will now replace ∆ by this
subgroup so that henceforth ∆ is S-arithmetic. This reduction will be used
in Section 2.5.

2.3. Maps of descent and restriction. Let L :“ ∆{{Γ be the completion
of ∆ with respect to Γ (i.e. the closure in the topology of pointwise conver-
gence of ∆ acting on ∆{Γ). Likewise let H :“ ∆{{Λ be the completion of
∆ with respect to Λ. Note that L and H are locally compact second count-

able groups. Further Γ
L

(the closure of Γ in L) and Λ
H

are compact open
subgroups (since they are isotropy groups of points in the coset spaces).

The construction of Schlichting completions is functorial with respect to
the inclusion Γ ãÑ Λ:

Proposition 2.6. There is a continuous surjection q : L Ñ H such that
the canonical projection π : ∆{Γ Ñ ∆{Λ is q-equivariant.

Proof. It is clear that π is ∆-equivariant, so ∆ permutes the fibers of π. We
claim that the same is true for L. Indeed, suppose g P L and choose gn P ∆
such that gn Ñ g pointwise on ∆{Γ. Let x, y P ∆{Γ be points that lie in the
same fiber of π. Then for any n ě 1, their translates gnx and gny also lie in
the same fiber of π. On the other hand, for n " 1, we have that gx “ gnx
and gy “ gny. Hence gx and gy belong to the same fiber of π.

Therefore every g P L descends to a map qpgq P Symp∆{Λq. It is obvious
that if gn Ñ g pointwise on ∆{Γ, then qpgnq Ñ qpgq on ∆{Λ, and hence
q is continuous. Since ∆ Ď L is dense and qp∆q Ď H, we conclude that
q : LÑ H is a continuous surjection. �

Proposition 2.7. Set N :“ kerpqq. Then N Ď Λ
L

.

Proof. Consider the N -orbit of the basepoint eΓ P ∆{Γ. Since N is the
kernel of q and π : ∆{Γ Ñ ∆{Λ is q-equivariant, we see that N ¨ eΓ Ď

q´1peΛq “ Λ{Γ. Since Γ
L

is the isotropy group of eΓ P ∆{Γ, we find that

N Ď ΛΓ
L

(the product on the right-hand side is taken as sets). The right-

hand side is clearly inside Λ
L

. �

Since N is normal in Λ
L

, the product NΓ
L

(as sets) is a subgroup of Λ
L

.
We have:

Proposition 2.8. NΓ
L

has finite index in Λ
L

.

Proof. We start by observing the map q : LÑ H is open: Indeed, since ∆ is
countable and L is locally compact, L is also σ-compact, and a classical result
of Freudenthal is that any continuous surjective homomorphism between
Hausdorff locally compact groups with σ-compact domain, is open [CdlH16,
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Cor. 2.D.6]. Therefore Γ
H
“ qpΓ

L
q is an open subgroup of the compact

group Λ
H

, and hence has finite index. Therefore NΓ
L
“ q´1pΓ

H
q has finite

index in q´1pΛ
H
q “ Λ

L
. �

By replacing Λ with its finite index subgroup ΛXΓ
H

and ∆ by the normal
closure of Λ , we can arrange that:

Standing assumptions 2.9. Λ
H
“ Γ

H
and hence we have equality in the

above proposition, i.e. Λ
L
“ NΓ

L
.

Note that Λ{Γ “ q´1peΛq is Λ
L

-invariant (inside ∆{Γ). Let res : Λ
L
Ñ

SympΛ{Γq denote the restriction map.

Proposition 2.10. res is continuous (with respect to the topology of point-

wise convergence), has image Λ{Γ (acting by translations) and kernel Γ
L

.

Proof. Clearly if a sequence of maps converge pointwise on ∆{Γ, they do

so on the subset Λ{Γ. Therefore res is continuous. Since Λ is dense in Λ
L

and respΛq “ Λ{Γ is closed in Sym(Λ{Γq, the image of res is exactly Λ{Γ. It

remains to determine kerpresq: Clearly Γ
L
Ď kerpresq. Conversely, suppose

g P Λ
L

satisfies respgq “ e. Write g “ limn λn for some λn P Λ. Then λn
fixes the basepoint eΓ P ∆{Γ for n " 1, and hence λn P Γ for n " 1. �

Since Γ is normal in Λ, we also have that Γ
L

is normal in Λ
L

. In particular,

Γ
L
XN is a compact open normal subgroup of N .

Claim 2.11. res restricts to an isomorphism N{pΓ
L
XNq

–
ÝÑ Λ{Γ.

Proof. Recall from Proposition 2.10 that

res : Λ
L
Ñ Λ{Γ

is surjective and kerpresq “ Γ
L

. So res descends to an isomorphism

Λ
L
{Γ

L –
Ñ Λ{Γ.

On the other hand, by the modification of Λ in Standing assumption 2.9,

we have Λ
L
“ NΓ

L
, so that

Λ
L
{Γ

L
“ pNΓ

L
q{Γ

L
– N{pΓ

L
XNq.

�

2.4. Down towards a central extension. Write C :“! Γ
L
X N "L for

the normal closure in L of Γ
L
X N . Note that C is a normal subgroup of

L contained in N , and is open in N (because Γ
L
XN is open in N), hence

also closed.
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Now we divide by C and study the extension

1 Ñ N{C Ñ L{C Ñ H Ñ 1.

Restriction of this short exact sequence to Λ
L
{C (as middle term) gives

(2.1) 1 Ñ N{C Ñ Λ
L
{C Ñ Λ

H
Ñ 1.

Claim 2.12. The short exact sequence (2.1) splits trivially as an extension
of topological groups.

Proof. We provide a left splitting. First note that by the above claim, res
descends to a map

res {C : Λ
L
{C Ñ pΛ{Γq{ respCq

that restricts to an isomorphism N{C Ñ pΛ{Γq{ respCq. Then the desired
left splitting is simply the composition of res {C with the inverse of its re-
striction to N{C:

pres {Cq|´1
N{C ˝ pres {Cq : Λ

L
{C ÝÑ N{C.

It is clear this map restricts to identity on N{C. This is a splitting of
topological groups because both res {C and its inverse are continuous. �

Hence we have a closed subgroup K Ď Λ
L
{C (namely the kernel of the

above left splitting) such that

Λ
L
{C – pN{Cq ˆK

(and this is compatible with the sequence, i.e. the copy of N{C is the one
given by the inclusion in the sequence, and K projects isomorphically to

Λ
H

.)
We note for use below:

Claim 2.13. Γ Ď K.

Proof. K is precisely the kernel of the left-splitting produced in the proof of
Claim 2.12, i.e. the kernel of

pres {Cq|´1
N{C ˝ pres {Cq : Λ

L
{C ÝÑ N{C.

The kernel of this map coincides with kerpres {Cq “ pCΓ
L
q{C and therefore

contains (the image of) Γ. �

Now consider the normal closure ! K "L{C .

Claim 2.14. Under the map L{C Ñ H, the image of ! K "L{C has finite
index.

Proof. Under q : L Ñ H, the image of K is Λ
H

and therefore the image

of ! K "L{C is ! Λ
H
"H . Taking instead the normal closure ! Λ "∆

in ∆ and noting that by Lemma 2.4, ∆ is S-arithmetic and in particular
satisfies the Margulis normal subgroups theorem, we see that ! Λ "∆ has
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finite index in ∆. Since ∆ is dense in H and ! Λ
H
"HĎ H is open (and

hence closed), it follows that ! Λ
H
"H has finite index in H. �

Write H 1 for the image of ! K "L{C in H, and let L1 be the preimage of

H 1 in L{C, so that we can write

(2.2) 1 Ñ N{C Ñ L1 Ñ H 1 Ñ 1.

Since K commutes with N{C, so does its normal closure. In particular
! K "L{C intersects N{C in a central subgroup Z that is normal in L{C.
Now we quotient by Z and find the sequence

(2.3) 1 Ñ pN{Cq{Z Ñ L1{Z Ñ H 1 Ñ 1

which splits trivially as

L1{Z – pN{Cq{Z ˆ p! K "L{C {Zq.

Claim 2.15. Z has finite index in N{C.

Proof. We have a natural map ∆ Ñ pL{Cq{Z. Let ∆1 Ď ∆ consist of those
elements whose projection to L{C lies in L1. So ∆1 is a finite index subgroup
of ∆. Composition of ∆1 Ñ L1 Ñ L1{Z with the projection from

L1{Z – pN{Cq{Z ˆ p! K "L {Zq

to its first factor restricts is a map ρ : ∆1 Ñ pN{Cq{Z. Then ρ is surjective:
Indeed, the image of ∆ in L1 is dense and N{C is discrete. Furthermore,
ρ has infinite kernel: Indeed kerpρq “ ∆ X p! K "L {Zq. Since Γ Ď K by
Claim 2.13, ρ is trivial on Γ.

Since ∆1 is S-arithmetic and ρ has infinite kernel, by Margulis’ normal
subgroups theorem, its image is finite. Since the image of ρ is isomorphic to
pN{Cq{Z, we conclude that Z has finite index in N{C. �

2.5. Splitting of the central extension. The goal of this section is to
prove:

Lemma 2.16. Assume the notation of the Main Theorem 1.3, and define
C as above. Then C Ď N has finite index.

Proof. Since Z Ď N{C is finite index, it suffices to prove that Z is finite.
Recall that L1 is a suitable finite index subgroup of L. Consider the short
exact sequence

(2.4) 1 Ñ Z Ñ L1 Ñ L1{Z Ñ 1.

Write H2 :“ L1{Z and recall that H2 – pN{Cq{Z ˆ H 1. The above short
exact sequence is a central extension, and hence is determined by a co-
homology class in H2pH2, Zq. We claim this cohomology class is actually
contained in the continuous cohomology H2

c pH
2, Zq. Here L1 is equipped

with the topology as a subgroup of the Schlichting completion L “ ∆{{Γ,
and Z is equipped with the subspace topology (and hence is discrete) of
L1 and H2 is equipped with the quotient topology. To establish continuity,
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recall that a central extension corresponds to a continuous cohomology class
if the extension is a product as topological spaces (Hu [Hu52, 5.3]), i.e. if
L1 is homeomorphic to Z ˆH2.

Claim 2.17. L1 is homeomorphic to Z ˆH2.

Proof. Since H2 – pN{Cq{Z ˆH 1, and N{C is a discrete group and hence
homeomorphic to ZˆpN{Cq{Z, it suffices to show that L1 is homeomorphic
to pN{Cq ˆH 1.

By Claim 2.12 the short exact sequence

1 Ñ N{C Ñ L1 Ñ H 1 Ñ 1

splits as an extension of topological groups when restricted to the compact

open subgroup Λ
L
{C of L1, i.e.

1 Ñ N{C Ñ Λ
L
{C Ñ Λ

H
Ñ 1

is split and this splitting is topological. Since Λ
L
{C is open in L1, we can

choose a (countable, discrete) set tliuiPI of its coset representatives, and
write

L1 “
ğ

iPI

li Λ
L
{C.

Using Λ
L
{C – pN{Cq ˆ Λ

H
and that N{C is normal in L1, we have a

homeomorphism

L1 –
ğ

iPI

lippN{Cq ˆ Λ
H
q

“ N{C ˆ
ğ

i

liΛ
H

“ N{C ˆH 1,

as desired. �

This cohomological rephrasing is only useful if we can compute the rele-
vant cohomology group H2

c pH
2, Zq:

Claim 2.18. H2
c pH

2, Zq is torsion.

Proof. First note that Z is finitely generated: Indeed, Z has finite index in
N{C (Claim 2.15) so it suffices to show N{C is finitely generated. But N{C
is a quotient of Λ{Γ (Claim 2.11) and hence is finitely generated because
Λ is. Therefore Z is finitely generated and abelian, so that we can write
Z – Zr ‘ T for some finite abelian group T , and hence

H2
c pH

2, Zq – H2
c pH

2,Zqr ‘H2
c pH

2, T q.

Since T is finite, the second term is clearly torsion.

Remark 2.19. For later use in the positive characteristic case (see Section
3), we note that we will not use that T is finite, but merely that it has
bounded exponent.
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Hence it remains to show that H2
c pH

2,Zq is torsion. To do so, consider
the short exact sequence of coefficients

(2.5) 0 Ñ ZÑ CÑ C{ZÑ 0.

Since this sequence is not split (as topological groups), this does not auto-
matically yield a long exact sequence on continuous cohomology of (locally
compact, second countable) topological groups. However, for totally discon-
nected groups, it is a result of Michael that there is a long exact sequence
(see [Wig73, Thm M]). The part that is relevant for us is

(2.6) ¨ ¨ ¨ Ñ H1
c pH

2,C{Zq Ñ H2
c pH

2,Zq Ñ H2
c pH

2,Cq . . .
To describe H2

c pH
2,Cq, recall the following vanishing result for the contin-

uous cohomology of semisimple groups:

Theorem 2.20 (Casselman-Wigner [CW74, Cor. 2]]casselman-wigner). Let
F be a non-archimedean local field. The F -rational points of a connected,
semisimple, algebraic group over F have vanishing continuous cohomology
(with C-coefficients) in positive degrees.

Remark 2.21. The above citation is for the result with F “ Qp. For the
general case, see [CW74, Rem. (2), p. 210].

We will use this to show that H2
c pH

2,Cq “ 0: Indeed, we have H2 –
pN{Cq{Z ˆ H 1 and H 1 is a finite index subgroup of GpkSq (see Remark
2.5). The cohomology of H2 is then computed using the Hochschild-
Serre spectral sequence (see [CW74, Prop. 5]), whose second page is
Epq2 “ Hp

c pH2{H 1, H
q
c pH 1,Cqq. Since H2{H 1 – pN{Cq{Z is finite, its co-

homology vanishes in positive degrees so that the the second page is concen-
trated on p “ 0, where its values are H‚c pH

1,Cq. Further, H 1 is a finite index,
open, normal subgroup of a finite product of groups to which Casselman-
Wigner’s result applies, and the same spectral sequence argument shows
that H2

c pH
1,Cq “ 0, as desired.

Finally, to be able to use the long exact sequence (2.6), we consider
H1
c pH

2,C{Zq: From the splitting H2 – pN{Cq{Z ˆ H 1, it is clear that
H2 has compact totally disconnected topological abelianization (i.e. the

quotient by rH2, H2s is finite), and hence H1
c pH

2,C{Zq is torsion.
From the long exact sequence (2.6), it follows that H2

c pH
2,Zq is also

torsion, as desired. �

Remark 2.22. Again for use in the positive characteristic, we note we
only used that the topological abelianization of H2 is compact and totally
disconnected. In characteristic zero, the proof in fact shows that H2

c pH
2, Zq

is finite.

So far we have found that H2
c pH

2, Zq is torsion. We will now use this to
show that Z is finite. Let ω P H2

c pH
2, Zq be the class corresponding to the

central extension
1 Ñ Z Ñ L1 Ñ H2 Ñ 1,
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and choose m ě 1 such that mω “ 0. Then the extension mL1 corresponding
to mω is split. The natural map L1 Ñ mL1 composed with the projection
mL1 Ñ Z gives a continuous map L1 Ñ Z. Further it restricts to multiplica-
tion by m on Z. Hence if Z is infinite, then the image of L1 Ñ Z is infinite.
Since ∆1 is dense in L1, the image of ∆ in Z is also infinite. This contradicts
the normal subgroups theorem. We conclude that Z is finite. �

2.6. End of the proof of Theorem 1.3. In this section we prove:

Theorem 2.23. Let ∆ be a finitely generated group with commensurated,
finitely generated subgroup Λ Ď ∆. Suppose Γ is another commensurated
subgroup of ∆ that is normal in Λ. Further assume:

(1) H2
c p∆{{Λ,Cq “ 0,

(2) Any normal subgroup of ∆ is finite or finite index.

Then Γ Ď Λ has finite index.

Remarks 2.24.

(1) Clearly, this implies Main Theorem 1.3.
(2) Creutz-Shalom [CS14] have given conditions on ∆ {{Λ and Λ {{Γ that

guarantee Assumption (2).

By Lemma 2.16, C has finite index in N and hence is cocompact in

Λ
L
“ NΓ

L
. In the remainder of this section we will prove that C is also

compact, so that Λ
L

is compact, and hence Γ has finite index in Λ.

To prove compactness of C :“! Γ
L
X N " (where the normal closure

is taken in L), we start by investigating the conjugation action of L on N .
The key property is that these automorphisms are inner modulo a compact
subgroup:

Lemma 2.25. For every ` P L, let c` : N Ñ N denote conjugation by `.
Then for every ` P L, there exists a compact open normal subgroup C` Ď N
such that ` restricts to an automorphism of C` and descends to an inner
automorphism of N{C`.

Proof. For ` P Λ
L

, set C` :“ Γ
L
XN . Then it is clear that c`pC`q “ C`. We

have N{C` – Λ{Γ – Λ
L
{Γ

L
, and c` descends to conjugation of the image of

` in Λ
L
{Γ

L
. This proves the claim for ` P Λ

L
.

Hence the claim is also true for ` conjugate into Λ
L

. Finally, we note that

Λ
L

normally generates L (since it contains N and Λ
H

normally generates
H “ L{N). So it remains to prove that the composition of automorphisms
that are inner modulo compact is inner modulo compact. Let ϕ,ψ be two
automorphisms that are inner modulo Cϕ and Cψ. Consider Cϕψ :“ CϕCψ “
CψCϕ. Note that Cϕψ is a compact normal subgroup that is invariant under
both ϕ and ψ: For example, to see invariance under ϕ, note that Cϕψ{Cϕ is
a compact normal subgroup of N{Cϕ and hence invariant under any inner
automorphism.
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Finally, note that ϕ ˝ψ descends to an automorphism of N{pCϕψq that is
the composition of inner automorphisms, and hence is also inner. �

Next, we show that in the above claim, there is a single compact subgroup
CL of N that works for all ` P L simultaneously. This will immediately imply
compactness of C:

Lemma 2.26. There exists a compact subgroup CL Ď N containing Γ
L
XN

such that CL is normal in L. In particular, C “! Γ
L
XN " is compact.

Proof. Let S∆ be a finite generating set of ∆. Since ∆ Ď L is dense, it

suffices to construct a compact subgroup CL Ď N containing Γ
L
XN that is

normalized by S∆. For s P S∆, choose a compact normal subgroup Cs Ď N
such that s is inner modulo Cs. Set

CL :“ pΓ
L
XNq

ź

sPS∆

Cs.

Then CL is compact and just as in the proof of the previous lemma, it
is normalized by any s P S∆ because CL{Cs is invariant under any inner
automorphism of N{Cs. �

3. Positive characteristic

In this section, we will prove the analogous theorem in positive character-
istic. The proof is largely identical, except where finite generation of lattices
is used in Section 2.5. The only issue that we cannot resolve in this general-
ity is that if Λ is non-uniform (and hence infinitely generated), we were not
able to prove its arithmeticity. Therefore we have the following modified
statement in positive characteristic:

Theorem 3.1. Let k be a local field of positive characteristic p ą 0 and G
a connected semisimple algebraic group defined over k. Let Λ be a lattice in
G :“ Gpkq and suppose Γ is an infinite normal subgroup of Λ with commen-
surator ∆ that is dense in G. Suppose that either Λ is uniform, or that Λ
is arithmetic. Then Γ is an arithmetic lattice and hence has finite index in
Λ.

Proof. The proof is verbatim identical to the above proof in characteristic
zero, except in the following places:

3.1. Schlichting completions. This parallels Section 2.1. No changes are
necessary.

3.2. Arithmeticity of Λ. This section used finite generation of Λ. How-
ever, in positive characteristic, nonuniform lattices in rank 1 groups are
infinitely generated (see Lubotzky’s Theorem 3.2 below for a more precise
statement), and therefore this part of the proof does not go through if Λ is
nonuniform. However, if Λ is nonuniform, we assumed it is arithmetic so
that we can simply skip this part of the proof.
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As in Remark 2.5, we henceforth replace ∆ by xΛ, gy, where g P ∆zΛ is
arbitrary. By Lemma 2.4, ∆ is an S-arithmetic lattice for some finite set of
places S and in particular satisfies the Normal Subgroups Theorem.

3.3. Maps of descent and restriction. No changes are necessary in 2.3.

3.4. Down to the central extension. No changes are necessary in 2.4.

3.5. Splitting of the central extension. Some modifications are required
to establish that H2

c pH
2, Zq is torsion (Claim 2.18). Namely, finite genera-

tion of Λ is used to obtain finite generation of Z. However, as we mentioned
above, in positive characteristic, nonuniform lattices in rank one groups are
not finitely generated. We note that by using Margulis Normal Subgroups
Theorem, we can reduce to the case where G is rank one, non-compact and
simple. In that case, we have the following result of Lubotzky that gives a
‘thick-thin decomposition’ of lattices in such G:

Theorem 3.2 (Lubotzky [Lub89, Thm. 2]). Assume the notation of The-
orem 3.1. Then Λ contains a finite index subgroup Λ1 that can be written

Λ1 – F ˚ ˚
1ďjďd

U j ,

where F is a finitely generated free group and U j are lattices in unipotent
radicals of minimal parabolic subgroups of G.

Henceforth we fix Λ1, F, U j as in the above theorem. Note that the groups
U j are not finitely generated, and hence, neither is Λ. However, if Gpkq Ď
SLpn, kq, then any unipotent element of Gpkq has order dividing q :“ pn:
Indeed, Ap

n
´ Id “ pA´ Idqp

n
“ 0. Then we argue as follows to prove that

H2
c pH

2, Zq is torsion: Write N{C “ Λ{Θ and let S be the image in N{C of
finitely many coset representatives of Λ{Λ1 and the image of the generators
of the free group F . Then N{C is virtually abelian and generated by the

finite set S and the set q
a

teu of elements of exponent pn.
Our first goal is to show that Z is also generated by a set of this form. To

see this, note that Z X q
a

teu is a (characteristic) subgroup of Z (because Z

is abelian), and q
a

teu{pZX q
a

teuq is finite (because Z is central). Therefore

Θ{pZX q
a

teuq is finitely generated, and hence so is its finite index subgroup

Z{pZX q
a

teuq. Let SZ be a finite set of generators of Z{pZX q
a

teuq, and let

SZ be a chosen set of pre-images of the elements of SZ . Then SZYpZX
q
a

teuq
generates Z, as desired.

Next, we will show that Z – Zr ‘ T for some r ă 8 and bounded
exponent group T . Indeed, since Z{p q

a

teuXZq is finitely generated abelian,

we see that q
a

teuXZ has finite index in the torsion subgroup T :“ TorpZq,
and hence T has bounded exponent. Further Z{T is finitely generated and
torsion-free, so it is isomorphic to Zr for some 0 ď r ă 8, as desired.

The above argument replaces the use of finite generation of Λ in the
proof of Claim 2.18. The rest of the proof goes through: The vanishing
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of H2
c pH

1,Cq “ 0 is established as before. To show that H1
c pH

2,C{Zq –
HomcpH

2,C{Zq is torsion, it suffices to show that the topological abelian-
ization of H2 is compact (because it is also totally disconnected). By a result
of Tits (see [Tit64] or [Mar91, Thm I.1.5.6(ii)]), the commutator subgroup
of H is given by H`, and compactness of H{H` is due to Borel-Tits ([BT73,
6.14] or [Mar91, I.2.3.1(b)]).

3.6. End of the proof of Theorem 3.1. No changes are necessary because
in this part of the proof, we do not use finite generation of Λ, only that of ∆.
And while in positive characteristic, lattices need not be finitely generated,
higher rank lattices (in particular S-arithmetic ones) always are (due to
Venkataramana when one of the simple factors is higher rank [Ven88] and
Raghunathan if all simple factors have rank 1 [Rag89]). �

4. Supergroups of arithmetic lattices

In this section we prove the technical Lemma 2.4 on subgroups of S-
arithmetic lattices containing an arithmetic lattice. With minor additional
assumptions, this is due to Venkataramana (see [LZ01, Prop. 2.3]) with
essentially the same proof. This fact is probably well-known to experts but
we have not been able to locate a version in full generality in the literature.
For convenience we restate the result:

Lemma 4.1. Let Θ Ď Gpkq be a subgroup containing Λ whose projection
to Gpksq is bounded for almost all places s, and let S be the (finite) set of
places where the projection of Θ is unbounded. Then Θ is S-arithmetic.

Proof. Set GpkSq :“
ś

sPS Gpksq and let KS :“ Λ
GpkSq be the closure of Λ.

Then KS is compact and open in a cocompact normal subgroup GS of GpkSq.
Here, openness follows by applying weak approximation (due to Kneser for
the classical groups and Platonov in general (see e.g. [PR94])) to the simply-

connected covering rGÑ G and using that its image is a cocompact normal
subgroup of GpkSq).

We claim that ΘXGS also has unbounded projection at every s P S, so
that we can replace Θ by Θ X GS . We argue by contradiction so suppose
that Θ X GS has bounded projection at some s P S. Then its fixed set in
the Bruhat-Tits building is nonempty and, since GS Ď GpkSq is normal,
also Θ-invariant. On the other hand the pΘXGSq-fixed set is finite because
ΘXGS contains ΛXGS . It follows that a finite index subgroup of Θ fixes
a point in the Bruhat-Tits building and hence Θ itself is bounded, but this
is a contradiction.

As mentioned above, we will now replace Θ by Θ X GS so that we have
Θ Ď GS . We claim that the image of Θ under the diagonal embedding
diag : Θ Ñ G ˆ GS is a lattice in G ˆ GS . To see this, let F Ď G be a
Λ-fundamental domain of finite measure, and we will show that

F ˆKS Ď GˆGS
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is a diagpΘq-fundamental domain for diagpΘq Ď G ˆ GS . First, we argue
the diagpΘq-translates of F ˆKS are disjoint. Suppose that θ P diagpΘq is
such that θpF XKSq X pF ˆKSq ‰ H. By inspecting the second factor and
using KS is a subgroup, we obtain that the projection of θ to the second
factor lies in KS . Since ΘXKS “ Λ, we have θ P diagpΛq. Then since F is
a fundamental domain for Λ Ď G and θF XF ‰ H, we find that θ is trivial.

Now we show diagpΘqpF ˆKSq “ G ˆ GS . Since KS is Λ-invariant and
F is a fundamental domain for Λ Ď G, it suffices to show that ΘKS “ GS .
Since in addition KS Ď GS is open, it suffices to show Θ is dense in GS .

But for every s P S, the closure Hs :“ Θ in Gs is unbounded and

open. Therefore the the pre-image rHs of Hs in the universal cover rGpksq
is also open and unbounded. However, any open, noncompact subgroup

of rGpksq contains the subgroup rGpksq` generated by all unipotents (this is
an unpublished result of Tits with a published proof by Prasad [Pra82])

and rGpksq` “ rGpksq by Platonov’s proof of the Kneser-Tits conjecture
(for locally compact non-archimedean fields) [Pla69]. Finally, the image of
rGpksq in Gpksq is cocompact (Borel-Tits [BT73, 3.19 and 20] or see [Mar91,
I.2.3.4(i)]). So we conclude that Θ Ď GS is a closed subgroup whose projec-
tion to each factor Gpksq is open and cocompact.

We now argue by induction on |S| that Θ is open and cocompact in GS :
Indeed, for |S| “ 1 the above argument proves exactly that. Now suppose
that |S| ą 1 and fix some element s P S. Let Ks be a maximal compact
subgroup of Gpksq containing Λ, and set Θs :“ Θ X Ks. By the inductive
hypothesis, Θs is open and cocompact in GSzs. Finally, when we add the

last place s, the argument from the base case shows that Θ is open and
cocompact in GS . �

5. The reducible case

In this section, we prove a version of the main theorem for reducible lat-
tices. For simplicity, we state only the result in characteristic zero. The
interested reader can combine the proof here with the partial result in The-
orem 3.1 to obtain the most general result.

Theorem 5.1. Let Gi, i P I, be finitely many semisimple algebraic groups
defined over local fields of characteristic zero. Set G :“

ś

iGi and let Λ Ď G
be a lattice such that the projection of Λ to every factor Gi is an irreducible
lattice Λi.

Suppose Γ Ď Λ is a normal subgroup with dense commensurator. Then
there is a subset J Ď I of factors such that Γ has finite index in

ś

jPJ Λj.

Proof. Note that Λ Ď
ś

iPI Λi has finite index (since Λ is a lattice and
ś

i Λi
is discrete). Then there is a finite index subgroup of Γ that is normalized
by

ś

iPI Λi, and hence we can replace Λ by
ś

iPI Λi.
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Let pi : G Ñ Gi denote the projection onto a factor. Then pipΓq is a
normal subgroup of Λi that is commensurated by pip∆q, and hence by the
Main Theorem 1.3, pipΓq is either finite or has finite index in Λi.

Let J denote the subset of factors such that pipΓq Ď Λi has finite index,
and set GJ “

ś

jPJ Gj . Then Γ X GJ has finite index in Γ, and hence a

further finite index subgroup Γ1 is contained in GJ and also normal in Λ.
By replacing G by GJ and Γ by Γ1, we may assume that pipΓq Ď Λi has
finite index for all i. By replacing Λ by its finite index subgroup

ś

i pipΓq,
we may assume pipΓq “ Λi.

We will now show that Γ Ď
ś

i Λi has finite index. Indeed, for any i P I,
the intersection with a factor Ni :“ ΓXGi is a normal subgroup of Λi, and
it is easy to see pip∆q commensurates Ni: Indeed for δ P ∆, the natural map

Ni{pNi XN
δ
i q Ñ Γ{pΓX Γδq

is injective because

Ni X pΓX Γδq “ Gi X ΓX Γδ

“ Gi X ΓX pGi X Γqδ

“ Ni XN
δ
i .

Therefore by the Main Theorem 1.3 applied to Ni, we obtain that Ni Ď Λi
is either finite or finite index. We will argue by contradiction that Ni must
be infinite for all i, which will complete the proof.

Suppose then that there is i P I such that Ni is finite. Since pipΓq “ Λi is
residually finite, there is a finite index subgroup Γ1 Ď Γ such that Γ1XNi “ 1.
By passing to a further finite index subgroup, we can assume that Γ1 Ď Λ is
normal, and henceforth we replace Γ by Γ1, so that Ni “ 1. It follows that
the projection qi : G Ñ

ś

j‰iGj away from Gi restricts to an isomorphism

on Γ, and hence Γ is the graph of a surjective homomorphism qipΓq Ñ Λi.
But the graph of a homomorphism ϕ : AÑ B is not normal in AˆB unless
its image is contained in the center of B. Since Λi is not abelian, this is a
contradiction. �
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