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Abstract. A group Γ is said to be finitely non-co-Hopfian, or renormalizable, if there exists a

self-embedding ϕ : Γ → Γ whose image is a proper subgroup of finite index. Such a proper self-
embedding is called a renormalization for Γ. In this work, we associate a dynamical system to a

renormalization ϕ of Γ. The discriminant invariant Dϕ of the associated Cantor dynamical system

is a profinite group which is a measure of the asymmetries of the dynamical system. If Dϕ is a finite
group for some renormalization, we show that Γ/Cϕ is virtually nilpotent, where Cϕ is the kernel

of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show

that the action associated to a renormalizable group is virtually renormalizable. We study the
properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an

invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable

Cantor action is an invariant of continuous orbit equivalence. Finally, the notion of a renormalizable
Cantor action is related to the notion of a self-replicating group of automorphisms of a rooted tree.

1. Introduction

A countable group Γ is co-Hopfian if every monomorphism ϕ : Γ → Γ is an isomorphism [5], and
is said to be non-co-Hopfian otherwise. If there exists a self-embedding ϕ whose image is a proper
subgroup of finite index, then Γ is said to be finitely non-co-Hopfian [58]. A proper self-embedding
ϕ : Γ→ Γ with finite index is called a renormalization of Γ, in analogy with the case for Γ = Zn. If
Γ admits a renormalization, then it is said to be renormalizable.

The free abelian group Zn is renormalizable, as are many finitely generated nilpotent groups. There
are also many examples of renormalizable groups which are not nilpotent, as described for example
in [20, 26, 30, 31, 32, 49, 51, 58]. On the other hand, the free group Z?n = Z ? · · · ? Z for n ≥ 2
is non-co-Hopfian, but is not renormalizable. The classification of non-co-Hopfian groups in general
appears to be a difficult problem.

There is a related concept of a scale-invariant group, introduced by Benjamini (see [55, Section 9.2]).
A scale for Γ is a descending chain of finite index subgroups S = {Γ` | ` ≥ 1} whose intersection is a
finite group, and such that for each `, there exists an isomorphism φ` : Γ→ Γ`. Benjamini asked if
a scale-invariant group must be virtually nilpotent? Nekrashevych and Pete [49, Theorem 1.1] gave
examples of scale-invariant groups which are not virtually nilpotent. In the same work, the authors
defined the notion of a strongly scale-invariant group, as a renormalizable group Γ such that the
collection of subgroups {Γ` = ϕ`(Γ) | ` ≥ 0} is a scale for Γ. Then [49, Question 1.1] asks if a
strongly scale-invariant group must be virtually nilpotent?

In this work, we obtain a partial answer to this question. The key idea is to study the properties of

an infinite profinite group Γ̂ϕ naturally associated to a renormalization ϕ. The group Γ̂ϕ is a proper
quotient of the full profinite completion of Γ. The key observation is given in Proposition 5.2, which

shows that ϕ : Γ → Γ induces an open embedding ϕ̂ : Γ̂ϕ → Γ̂ϕ. Then Theorem 1.5 states that if

both the intersections ∩`>0 ϕ
`(Γ) and ∩`>0 ϕ̂

`(Γ̂ϕ) are finite groups, then Γ is virtually nilpotent.
In other words, we answer in the affirmative the question of Nekrashevych and Pete above under a

stronger assumption, that both Γ and the infinite profinite group Γ̂ϕ admit a scale.
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More precisely, given a renormalization ϕ : Γ → Γ, let C(Gϕ) be the largest normal subgroup of

K(Gϕ) =
⋂
`>0 ϕ

`(Γ). In Definition 2.5 we define a closed subgroup Dϕ ⊂ Γ̂ϕ which is naturally

associated to the renormalization ϕ. In Theorem 5.3, we prove thatDϕ =
⋂
`>0 ϕ̂

`(Γ̂ϕ). In particular,

ϕ induces a scale on the profinite group Γ̂ϕ if and only if Dϕ is finite. We have:

THEOREM 1.1. Let Γ be a finitely generated group, and let ϕ : Γ→ Γ be a renormalization of Γ.

(1) If Dϕ is the trivial group, then Γ/C(Gϕ) is nilpotent.
(2) If Dϕ is a finite group, then Γ/C(Gϕ) is virtually nilpotent.

The assumption that Γ is finitely generated is essential, as shown by the examples in Section 9.1.

Our approach to the study of renormalizable groups is based on the study of the Cantor dynamical
systems naturally associated to their renormalizations. We now briefly discuss this approach.

An action Φ : Γ × X → X, or (X,Γ,Φ), is said to be a Cantor action if Γ is a finitely generated
group, X is a Cantor metric space, and the action is minimal. The basic properties of Cantor actions
are discussed in Section 2. In Section 3, we associate a minimal equicontinuous Cantor action
(Xϕ,Γ,Φϕ) to a renormalization ϕ of Γ. Furthermore, we show that the renormalization ϕ : Γ→ Γ
induces a renormalization of the action (Xϕ,Γ,Φϕ), as in Definitions 7.1 and 7.2.

Let Φϕ : Γ → Homeo(Xϕ) be the action homomorphism associated to the minimal equicontinuous
Cantor dynamical system (Xϕ,Γ,Φϕ). The closure of the image Φϕ(Γ) is an infinite profinite group,

denoted by Γ̂ϕ, called the Ellis group of the action in the literature [4, 24, 25]. There is an induced

transitive action Φ̂ϕ of Γ̂ϕ on Xϕ, and the discriminant group Dϕ ⊂ Γ̂ϕ is the isotropy subgroup of
this action at the canonical fixed-point xϕ ∈ Xϕ of the contraction λϕ : Xϕ → Xϕ. The isomorphism
class of Dϕ depends only on the conjugacy class of the action, and has other invariance properties
[22, 23, 38, 40]. If Γ is abelian, the discriminant group Dϕ is the trivial group for any renormalization,
but for Γ non-abelian it need not be trivial. The regularity properties of the restricted action of Dϕ
on Xϕ, as discussed in Section 4, play a fundamental role in the proof of our results.

The proof of Theorem 1.1 is given in Section 6, and uses Theorem 5.3 which is based on the results
in Reid [52], quoted as Theorem 5.1 below, and Theorem 4.4 and Proposition 5.2 in this work.

We give an example in Section 9.3 of a renormalization of the Heisenberg group for which Dϕ is an
infinite profinite group. Thus, while the assumption that Dϕ is finite is sufficient to conclude that
Γ/C(Gϕ) is nilpotent, it is not a necessary condition. On the other hand, there are renormalizations
of the Heisenberg group for which Dϕ is the trivial group. The known examples of renormalizations
suggest that it is an interesting problem to study the collection of all renormalizations for a given
group Γ, even for the Heisenberg group.

We will now discuss dynamical properties of the Cantor actions associated to renormalizations,
which play the key role in the proof of Theorems 1.1, and of its corollary for strongly scale-invariant
groups. While most of these properties and results do not require that Γ be finitely-generated, many
of our results do require this assumption, as will be pointed out when appropriate.

A Cantor action (X, G,Φ) is free if for any g ∈ Γ which is not the identity, the action Φ(g) has no
fixed points. The action is topologically free, as in Definition 2.1, if the set of points fixed by at
least one non-trivial element of the group is a meager set. The notion of a quasi-analytic Cantor
action, as in Definition 4.1, was introduced in the works [23, 38] as a generalization of the notion of a
topologically free action. The quasi-analytic property of a Cantor action is a fundamental property
of renormalizable groups and actions.

THEOREM 1.2. The Cantor action Φϕ : Γ × Xϕ → Xϕ associated to a renormalization ϕ is
quasi-analytic. Hence, if the action Φϕ is effective then it is topologically free.

In fact, Theorem 1.2 is a consequence of a stronger statement. Given a Cantor action (X,Γ,Φ),
let Φ(Γ) ⊂ Homeo(X) denote the image subgroup. If the action is equicontinuous, then the closure

Φ(Γ) ⊂ Homeo(X) in the uniform topology of maps is a separable profinite group. This is discussed
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further in Section 2.2. For the Cantor action (Xϕ,Γ,Φϕ) associated to a renormalization ϕ, we denote

this closure by Γ̂ϕ = Φϕ(Γ). We prove in Theorem 4.4 that the profinite action Φ̂ϕ : Γ̂ϕ×Xϕ → Xϕ

is quasi-analytic, which implies Theorem 1.2. The quasi-analytic property is used to prove that the

monomorphism ϕ : Γ→ Γ induces an open embedding of the closure Γ̂ϕ into itself as below:

THEOREM 1.3. Let ϕ be a renormalization of the finitely generated group Γ. Then ϕ induces an

injective homomorphism ϕ̂ : Γ̂ϕ → Γ̂ϕ whose image is a clopen subgroup of Γ̂ϕ.

This is proved in Section 5, where we use its conclusion to obtain a structure theorem for the closure

Γ̂ϕ, an important consequence of which is the following:

THEOREM 1.4. Let ϕ be a renormalization of the finitely generated group Γ, and ϕ̂ : Γ̂ϕ → Γ̂ϕ

the induced map given by Theorem 1.3. Then Dϕ =
⋂
n>0

ϕ̂n(Γ̂ϕ).

Theorems 1.1 and 1.4 yield an answer to the profinite version of the Nekrashevych-Pete question:

THEOREM 1.5. Let ϕ be a renormalization of the finitely generated group Γ. Suppose that

K(Gϕ) =
⋂
`>0

ϕ`(Γ) ⊂ Γ , Dϕ =
⋂
n>0

ϕ̂n0 (Γ̂ϕ) ⊂ Γ̂ϕ

are both finite groups. Then Γ is virtually nilpotent. If both groups are trivial, then Γ is nilpotent.

As mentioned above, our study of renormalizable groups naturally suggests a related notion, that
of a renormalizable equicontinuous Cantor action, as introduced in Definition 7.1. It is modeled on
the concept of a renormalizable dynamical system, and also that of self-similar groups [33, 48] and
percolation theory [55, Section 9.2]. The class of renormalizable Cantor actions includes the class of
actions associated to a self-embedding ϕ : Γ → Γ, discussed above. We introduce a variant of this
notion, the virtually renormalizable actions, in Definition 7.2.

The study of renormalizable Cantor actions is motivated, in part, by the examples of Cantor actions
on d-adic trees, where elements of the acting group are defined recursively, in terms of the action of
a finite set of generators on a rooted d-adic tree for d ≥ 2, where there is an embedding ϕ : Γ → Γ
whose image is a subgroup of the stabilizer group of a branch of a tree (see for example [48]). The
image ϕ(Γ) ⊂ Γ need not be of finite index in Γ, even though the stabilizer group of a branch always
has finite index in Γ. We discuss the relation of the notion of a renormalizable action with the notion
of self-replicating groups in more detail in Section 7.2.

An equicontinuous Cantor action can be quasi-analytic, locally quasi-analytic or wild, using the
notions and classification introduced in the works [38, 39, 40]. For renormalizable actions, there is
the following dichotomy:

THEOREM 1.6. A renormalizable equicontinuous Cantor action (X,Γ,Φ) is either quasi-analytic,
and in this case Γ is renormalizable and the action is topologically conjugate to the action given by
a renormalization of Γ, or the action is wild.

This result motivates the study of the invariants of renormalizable Cantor actions, both to under-
stand the invariants of the renormalization map, and to discover invariants of these actions which
distinguish between the quasi-analytic and wild cases of Theorem 1.6. Our final results in this work
considers their invariant properties under continuous orbit equivalence.

THEOREM 1.7. Let (X,Γ,Φ) and (X′,Γ′,Φ′) be minimal equicontinuous Cantor actions which
are continuously orbit equivalent. If (X,Γ,Φ) is renormalizable and locally quasi-analytic, then
(X′,Γ′,Φ′) is virtually renormalizable.

As a consequence, we obtain that the isomorphism class of the discriminant group Dϕ associated to
a renormalization ϕ is an invariant of continuous orbit equivalence.
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THEOREM 1.8. Let (Xϕ,Γ,Φϕ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) be Cantor actions associated to renormaliza-

tions ϕ : Γ→ Γ and ϕ′ : Γ′ → Γ′, respectively. If the actions are continuously orbit equivalent, then
their discriminant groups Dϕ and D′ϕ′ are isomorphic.

Examples and applications of our results are discussed in Section 9.

Section 10 discusses open problems. In particular, the works [3, 38, 40] study wild Cantor actions,
and the relations between the discriminant invariant and the wild property for the action. It is an
interesting problem to further explore this relation for renormalizable actions, as these include many
class of branch groups and related constructions, as in [6, 7, 48, 49, 50, 34].

Acknowledgments. We would like to thank an anonymous referee for helpful comments and sug-
gestions. OL is supported by FWF Project P31950-N35. During this work, WvL was supported
by NSF Grant DMS-1855371, the Max Planck Institute for Mathematics, and NSF Grant DMS-
1928930 while participating in a program hosted by the Mathematical Sciences Research Institute
in Berkeley, California during the Fall 2020 semester.

2. Cantor actions

In this section, we recall some of the properties of Cantor actions. A basic reference is [4].

2.1. Basic concepts. For an action Φ: Γ×X→ X and γ ∈ Γ, let γx = Φ(γ)(x). We also sometimes
write γ · x = Φ(γ)(x) when necessary for notational clarity.

Let (X,Γ,Φ) denote an action Φ: Γ×X→ X. The orbit of x ∈ X is the subset O(x) = {γx | γ ∈ Γ}.
The action is minimal if for all x ∈ X, its orbit O(x) is dense in X.

An action (X,Γ,Φ) is equicontinuous with respect to a metric dX on X, if for all ε > 0 there exists
δ > 0, such that for all x, y ∈ X with dX(x, y) < δ and all γ ∈ Γ, we have dX(γx, γy) < ε. The
equicontinuous property is independent of the choice of the metric on X by Proposition 2.2.

An action (X,Γ,Φ) is effective, or faithful, if the action homomorphism Φ: Γ→ Homeo(X) has trivial
kernel. The action is free if for all x ∈ X and γ ∈ Γ, γx = x implies that γ = e, the identity of the
group. The isotropy group of x ∈ X is the subgroup

(1) Γx = {γ ∈ Γ | γx = x} .

Let Fix(γ) = {x ∈ X | γx = x}, and introduce the isotropy set

(2) Iso(Φ) = {x ∈ X | ∃ γ ∈ Γ , γ 6= id , γx = x} =
⋃

e 6=γ∈Γ

Fix(γ) .

DEFINITION 2.1. [12, 44, 53] (X,Γ,Φ) is said to be topologically free if Iso(Φ) is meager in X.

Note that if Iso(Φ) is meager, then Iso(Φ) has empty interior.

The notion of topologically free Cantor actions was introduced by Boyle in his thesis [11], and later
used in the works by Boyle and Tomiyama [12] for the study of classification of Cantor actions, by
Renault [53] for the study of the C∗-algebras associated to Cantor actions, and by Li [44] in his
study of rigidity properties of equicontinuous Cantor actions.

Now assume that X is a Cantor space. Let CO(X) denote the collection of all clopen (closed and open)
subsets of X, which forms a basis for the topology of X. For φ ∈ Homeo(X) and U ∈ CO(X), the
image φ(U) ∈ CO(X). The following result is folklore, and a proof is given in [39, Proposition 3.1].

PROPOSITION 2.2. A Cantor action Φ: Γ×X→ X is equicontinuous if and only if the orbit of
every U ∈ CO(X) is finite for the induced action Φ∗ : Γ× CO(X)→ CO(X).
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Let (X,Γ,Φ) be a minimal equicontinuous Cantor action. We say that U ⊂ X is adapted to the
action if U is a non-empty clopen subset, and for any γ ∈ Γ, if Φ(γ)(U)∩U 6= ∅ then Φ(γ)(U) = U .
The proof of Proposition 3.1 in [39] shows that given x ∈ X and a clopen set W with x ∈ W , there
is an adapted clopen set U with x ∈ U ⊂W .

The key property of an adapted set U is that the set of “return times” to U ,

(3) ΓU = {γ ∈ Γ | Φ(γ)(U) = U}

is a subgroup of Γ, called the stabilizer of U . Then for γ, γ′ ∈ Γ with Φ(γ)(U) ∩ Φ(γ′)(U) 6= ∅ we
have Φ(γ−1) ◦Φ(γ′)(U) = U , hence γ−1 γ′ ∈ ΓU . Thus, as the action is assumed to be minimal, the
translates {Φ(γ)(U) | γ ∈ Γ} form a finite clopen partition of X, and are in 1-1 correspondence with
the elements in the quotient space XU = Γ/ΓU . Then Γ acts by permutations of the finite set XU

and so the stabilizer group ΓU ⊂ Γ has finite index.

The action of γ ∈ Γ on XU is trivial precisely when γ is a stabilizer of each coset κ · ΓU , so γ ∈ CU
where CU =

⋂
κ∈Γ κ ΓU κ−1 ⊂ ΓU is the largest normal subgroup of Γ contained in ΓU . The

action of the finite group QU ≡ Γ/CU on XU by permutations is a finite approximation of the action
of Γ on X, and the isotropy group of the identity coset e · ΓU is DU ≡ ΓU/CU ⊂ QU .

DEFINITION 2.3. Let (X,Γ,Φ) be an equicontinuous Cantor action. A properly descending chain
of clopen sets U = {U` ⊂ X | ` ≥ 0} is an adapted neighborhood basis at x ∈ X for the action Φ, if
x ∈ U`+1 ⊂ U` for all ` ≥ 0, each U` is adapted to the action Φ, and the intersection ∩`>0 U` = {x}.

Given x ∈ X and ε > 0, Proposition 2.2 implies there exists an adapted clopen set U ∈ CO(X) with
x ∈ U and diam(U) < ε. Thus, one can choose a descending chain U of adapted sets in CO(X)
whose intersection is x, which shows the following:

PROPOSITION 2.4. Let (X,Γ,Φ) be a minimal equicontinuous Cantor action. Given x ∈ X,
there exists an adapted neighborhood basis U at x for the action Φ.

2.2. The dynamical profinite model. Given an equicontinuous Cantor action (X,Γ,Φ), let

Φ(Γ) ⊂ Homeo(X) denote the image subgroup. Then the closure Φ(Γ) ⊂ Homeo(X) in the uni-
form topology of maps is a separable profinite group. This group is identified with the Ellis group
for the action, as defined in [4, 24, 25]; see also [22, Section 2]. Each element ĝ ∈ Φ(Γ) is the uniform
limit of a sequence of maps {Φ(gi) | i ≥ 1} ⊂ Φ(Γ). We sometimes denote the limit ĝ by (gi).

For example, if Γ is an abelian group, then Φ(Γ) is a compact totally disconnected abelian group,
which can be thought of as the group of asymptotic motions of the system. When Γ is non-abelian,
the closure Φ(Γ) can have much more subtle algebraic properties.

Let Φ̂ : Φ(Γ) × X → X denote the induced action of Φ(Γ) on X. For ĝ ∈ Φ(Γ) we write its action

on X by ĝ x = Φ̂(ĝ)(x). For a minimal equicontinuous action Φ: Γ × X → X, the group Φ(Γ) acts
transitively on X. Given x ∈ X, introduce the isotropy group at x,

Φ(Γ)x = {ĝ ∈ Φ(Γ) | ĝ x = x} ⊂ Homeo(X) ,(4)

which is a closed subgroup of Φ(Γ), and thus is either finite, or is an infinite profinite group.

DEFINITION 2.5. The group Φ(Γ)x is called the discriminant of the action (X,Γ,Φ).

There is a natural identification X ∼= Φ(Γ)/Φ(Γ)x of left Φ(Γ)-spaces, and thus the conjugacy class of

Φ(Γ)x in Φ(Γ) is independent of the choice of x. If Φ(Γ)x is the trivial group, then X is identified with

the profinite group Φ(Γ), and the action Φ̂ is free. Note that there exists examples of free minimal

equicontinuous Cantor actions (X,Γ,Φ) for which the action Φ̂ is not free, and in fact Φ(Γ)x is an
infinite profinite group. The first such examples were constructed by Fokkink and Oversteegen in
[27, Section 8], and further examples are constructed in [23, Section 10].
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2.3. Equivalence of Cantor actions. We recall three notions of equivalence of Cantor actions.

The first and strongest is that of isomorphism of Cantor actions, which is a generalization of the
usual notion of conjugacy of topological actions. For Γ = Z, isomorphism corresponds to the notion
of “flip conjugacy” introduced in the work of Boyle and Tomiyama [12].

DEFINITION 2.6. Two Cantor actions (X,Γ,Φ) and (X′,Γ′,Φ′) are said to be isomorphic if there
is a homeomorphism h : X→ X′ and a group isomorphism Θ: Γ→ Γ′ so that

(5) Φ(γ) = h−1 ◦ Φ′(Θ(γ)) ◦ h ∈ Homeo(X′) for all γ ∈ Γ .

Return equivalence is a form of “virtual isomorphism” for minimal equicontinuous Cantor actions,
and is weaker than the notion of isomorphism. This equivalence is natural when considering the
Cantor systems arising from geometric constructions, as in the works [38, 39, 40].

Throughout this work, by a small abuse of notation, for a minimal equicontinuous Cantor action
(X,Γ,Φ) and adapted subset U ⊂ X, we use ΦU to denote both the restricted action ΦU : ΓU×U → U
and the induced quotient action ΦU : HU × U → U where HU = Φ(ΓU ) ⊂ Homeo(U).

DEFINITION 2.7. Minimal equicontinuous Cantor actions (X,Γ,Φ) and (X′,Γ′,Φ′) are return
equivalent if there exists an adapted set U ⊂ X for the action Φ and an adapted set V ⊂ X′ for the
action Φ′, such that the restricted actions (U,HU ,ΦU ) and (V,H ′V ,Φ

′
V ) are isomorphic.

Continuous orbit equivalence for Cantor actions was introduced in [11, 12], and plays a fundamental
role in various approaches to the classification of these actions [53]. Consider the equivalence relation
on X defined by an action (X,Γ,Φ),

(6) R(X,Γ,Φ) ≡ {(x, γx)) | x ∈ X, γ ∈ Γ} ⊂ X× X .

Given actions (X,Γ,Φ) and (X′,Γ′,Φ′), we say they are orbit equivalent if there exist a bijection
h : X→ X′ which maps R(X,Γ,Φ) onto R(X′,Γ′,Φ′), and similarly for the inverse map h−1.

DEFINITION 2.8. Let (X,Γ,Φ) and (X′,Γ′,Φ′) be Cantor actions. A continuous orbit equivalence
between the actions is a homeomorphism h : X → X′ which is an orbit equivalence, and there exist
continuous functions α : Γ× X→ Γ′ and β : Γ′ × X′ → Γ such that:

(1) for each x ∈ X and γ ∈ Γ, there exists α(γ, x) ∈ Γ′ and an open set x ∈ Ux ⊂ X such that
Ψ(α(γ, x)) ◦ h|Ux = h ◦ Φ(γ)|Ux;

(2) for each y ∈ X′ and γ′ ∈ Γ′, there exists β(γ′, y) ∈ Γ and an open set y ∈ Vy ⊂ X′ such that
Φ(β(γ′, y)) ◦ h|Vy = h ◦Ψ(γ′)|Vy.

Note that the maps α and β are not assumed to be cocycles over the respective actions.

3. Renormalizable groups

In this section, we construct the minimal equicontinuous Cantor action (Xϕ,Γ,Φϕ) associated to a
renormalization ϕ : Γ→ Γ, and give some of the basic properties of this action.

Set Γ0 = Γ, and for ` ≥ 1, recursively define subgroups Γ` ⊂ Γ, where Γ` = ϕ(Γ`−1) ≡ ϕ`(Γ).

Let Gϕ ≡ {Γ` | ` ≥ 0} denote the descending group chain, where each Γ` has finite index in Γ.
Denote the intersection of the group chain by K(Gϕ) ≡

⋂
`>0 Γ`. If K(Gϕ) is a finite group, then

the group Γ is said to be strongly scale-invariant, in the terminology of Nekrashevych and Pete [49].

Let X` = Γ/Γ` be the finite coset space. Note that X` is not necessarily a group, as the subgroup Γ`
is not assumed to be normal in Γ. Note that Γ acts transitively on the left on X`, and the inclusion
Γ`+1 ⊂ Γ` induces a natural Γ-invariant quotient map p`+1 : X`+1 → X`. The inverse limit space

(7) Xϕ ≡ lim←− {p`+1 : X`+1 → X` | ` ≥ 0}
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with the Tychonoff topology is a Cantor space. The actions of Γ on the factors X` induce a minimal
equicontinuous action on Xϕ, denoted by Φϕ : Γ×Xϕ → Xϕ or by (Xϕ,Γ,Φϕ).

Let Γ̂ϕ ⊂ Homeo(Xϕ) denote the closure of the image Φϕ(Γ) ⊂ Homeo(Xϕ), as introduced in

Section 2.2, and let Φ̂ϕ : Γ̂ϕ ×Xϕ → Xϕ denote the induced action.

The embedding ϕ induces a mapping λϕ : Xϕ → Xϕ, which is defined as the shift map on sequences
as follows. A point x̂ ∈ Xϕ is defined by an equivalence class of sequences x̂ = (g0, g1, g2, . . .)
with each g` ∈ Γ satisfying the relations g` = g`+1 mod Γ` for all ` ≥ 0. Then λϕ(x̂) =
(e, ϕ(g0), ϕ(g1), ϕ(g2), . . .) is well-defined, and is a contraction on Xϕ. Let xϕ ∈ Xϕ be the unique
fixed point for λϕ. Then xϕ = (e, e, e, . . .) where e ∈ Γ is the identity.

Following Definition 2.5, we obtain a fundamental notion associated to a renormalization of Γ.

DEFINITION 3.1. The discriminant group of (Xϕ,Γ,Φϕ) is Dϕ ≡ (Γ̂ϕ)xϕ ⊂ Γ̂ϕ.

For k ≥ 0, define

(8) Uk = {(g0, g1, g2, . . .) ∈ Xϕ | gi = e for 0 ≤ i ≤ k} ∼= lim←− {p`+1 : Γk/Γ`+1 → Γk/Γ` | ` ≥ k} ,
which is a clopen subset of Xϕ adapted to the action Φϕ, with stabilizer subgroup ΓUk

= Γk. The
clopen sets {Uk | k ≥ 0} form an adapted neighborhood basis at xϕ, and so we have xϕ =

⋂
k>0 Uk.

Observe that for all ` ≥ 0, the contraction mapping λϕ : Xϕ → Xϕ defined above restricts to a
homeomorphism onto λϕ : U` → U`+1.

As the orbit of xϕ is dense in Xϕ, for any non-empty open subset U ⊂ X there exists g ∈ Γ so that
Φ(g)(xϕ) ∈ U . It follows that there also exists k > 0 such that Φ(g)(Uk) ⊂ U .

3.1. The geometric (tree) model. Given a group chain Gϕ as above, the associated dynamical
system Φϕ : Γ×Xϕ → Xϕ can be represented as an action of a subgroup of the automorphism group
of a regular rooted tree as we discuss now. The construction we discuss is applicable to any chain
Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ of finite index subgroups of the group Γ = Γ0, without a requirement that the
subgroups in the chain are isomorphic to Γ.

A tree T consists of a set of vertices V =
⊔
`≥0 V`, where V` is a finite vertex set at level `, and of

edges joining vertices in V`+1 and V`, for all ` ≥ 0, defined as follows. For ` ≥ 0, identify the vertex
set V` with the coset space X` = Γ/Γ`. Join v` ∈ V` and v`+1 ∈ V`+1 by an edge if and only if
v`+1 ⊂ v` as cosets. Let d = |Γ : ϕ(Γ)| be the index, then for ` ≥ 0 the cardinality of V` is d`. Such
a tree is called a d-ary, or a regular tree.

An infinite path in T is a sequence of vertices (v`)`≥0 such that v`+1 and v` are joined by an edge,
for ` ≥ 0. The boundary ∂T of T is the collection of all infinite paths in T , and so it is the subspace

∂T = {(v`)`≥0 ⊂
∏
`≥0

V` | v`+1 and v` are joined by an edge}.

The space ∂T is a Cantor set with the relative topology from the product topology on
∏
`≥0 V`.

It is immediate that the identification of the vertex sets V` with the coset spaces X` induces an
identification of ∂T with the inverse limit space Xϕ defined by (7), with points in Xϕ corresponding
to infinite paths in ∂T .

The action of Γ on the coset spaces X` = V`, ` ≥ 0, is by permutations. Since the action of Γ
preserves the containment of cosets, the action preserves the connectedness of the tree T , that is,
the vertices v` ∈ V` and v`+1 ∈ V`+1 are joined by an edge if and only if for any g ∈ G the images
g · v` ∈ V` and g · v`+1 ∈ V`+1 are joined by an edge. Thus every g ∈ Γ defines an automorphism of
the tree T , and we can consider Γ as a subgroup of the group of tree automorphisms Aut(T ).

The study of actions of subgroups of automorphism groups of regular trees is an active topic in
geometric group theory, see for instance [48]. When studying the dynamical properties of an action
(Xϕ,Γ,Φϕ), sometimes it is useful to represent it as an action on the boundary of a regular tree.
However, our results in this paper rely heavily on the properties of the profinite completion G of Γ,
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and the combinatorial character of the methods used to study group actions on rooted trees makes
their use in the study of profinite completions rather cumbersome. In this paper, we rely mostly on
the algebraic methods we describe further in Sections 3.2 and 3.3, while explaining the implications
of our results for the actions of automorphisms of regular rooted trees in Section 7.2.

3.2. The algebraic profinite model. We next introduce an alternate profinite model for the
minimal equicontinuous action (Xϕ,Γ,Φϕ). For each ` ≥ 1, let C` denote the largest normal
subgroup (the core) of the stabilizer group Γ`, so

(9) C` =
⋂
g∈Γ

g Γ` g
−1 ⊂ Γ` .

As Γ` has finite index in Γ, the same holds for C`. Observe that for all ` ≥ 1, we have C`+1 ⊂ C`.
Introduce the quotient group Q` = Γ/C` with identity element e` ∈ Q`. There are natural quotient
maps q`+1 : Q`+1 → Q`, and we can form the inverse limit group

(10) Γ̂∞ = lim←− {q`+1 : Q`+1 → Q` | ` ≥ 0} .

THEOREM 3.2. [22, Theorem 4.4] There is a natural isomorphism τ̂ : Γ̂ϕ → Γ̂∞ which identifies
the discriminant group Dϕ with the inverse limit group

(11) D∞ = lim←− {q`+1 : Γ`+1/C`+1 → Γ`/C` | ` ≥ 0} ⊂ Γ̂∞ .

There is an interpretation of the group D∞ as an asymptotic defect of the Γ-action on X∞. Suppose
that Γ` is a normal subgroup, so that the quotient Γ/Γ` is a group. Then Γ/Γ` acts transitively and
freely on X`. For example, if Γ is abelian then this is always true. In general, for the normal core
C` ⊂ Γ`, the finite group Q` = Γ/C` acts transitively on X` and the finite subgroup D` = Γ`/C` is
the “defect” for the action of Q` on X` being a free action. Then D∞ is the inverse limit of these

finite defects, and provides a measure of the deviation of the action Φ̂∞ of Γ̂∞ on X∞ from being a
free action.

Associated to the group chain Gϕ, there are two subgroups,

(12) K(Gϕ) =
⋂
`>0

Γ` , C(Gϕ) =
⋂
g∈Γ

g K(Gϕ) g−1 .

where C(Gϕ) is the largest normal subgroup of Γ contained in K(Gϕ). Note that for any g ∈ C(Gϕ),
the action of Φϕ(g) on Xϕ is trivial.

3.3. The universal profinite model. We now introduce a model for the action (Xϕ,Γ,Φϕ) in
terms of the profinite completion G of Γ. Recall that G is the inverse limit of the finite quotient
groups Γ/N , for the set N = {N | N ⊂ Γ is a normal subgroup of finite index} which is partially
ordered by inclusion. That is, G = lim←− {Γ/N | N ∈ N}.

There is a homomorphism ψ : Γ→ G with dense image, and the kernel of ψ is the group N(ψ) given
by the intersection of all normal subgroups of finite index in Γ. Thus, N(ψ) is trivial exactly when
the group Γ is residually finite.

By the universal property of the profinite completion, the map Φϕ : Γ→ Γ̂ϕ ⊂ Homeo(Xϕ) induces

a surjective map Πϕ : G→ Γ̂ϕ of profinite groups, and let N(Πϕ) ⊂ G denote its kernel.

Let Dϕ ≡ Gxϕ ⊂ G denote the isotropy subgroup at xϕ of the action Φ̂G of G. Then N(Πϕ) ⊂ Dϕ.

We use the universal property of G to show a basic fact required for our study of renormalizations.

PROPOSITION 3.3. The renormalization ϕ : Γ→ Γ induces an open embedding ϕ̂G : G→ G.

Proof. Let Γ1 = ϕ(Γ) ⊂ Γ denote the image of ϕ. Then the partially ordered set

N1 = {N1 | N1 ⊂ Γ1 is a subgroup of finite index, normal in Γ1}
yields the universal profinite completion G1 of Γ1 and ϕ induces an isomorphism ϕ̂1 : G→ G1.
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Next, consider the partially ordered set N ′1 = {N ∩ Γ1 | N ∈ N}, where N is the collection of
finite-index subgroups which are normal in Γ. Let G′1 denote the profinite completion of Γ1 with
respect to N ′1. It is immediate that G′1 is the closure of ψ(Γ1) ⊂ G in G.

Note that if N ′ ∈ N ′, then N ′ is also normal in Γ1 so N ′ ∈ N1. Conversely, if N ∈ N1 then its
normal core CN1 = ∩g∈Γ g−1N1 g ⊂ N1 is a normal subgroup of Γ which has finite index in Γ1 so
CN1 ∈ N ′1. Thus, the two partially ordered sets N1 and N ′1 are cofinal in Γ1, hence the identity map

induces a homeomorphism Îd: G1
∼= G′1. It follows that the composition ϕ̂G ≡ Îd◦ϕ̂1 : G→ G1

∼= G′1
is an isomorphism onto the subgroup G′1 ⊂ G of finite index, which is thus open. �

For each ` ≥ 1, let G` = ϕ̂`G(G) which is an open subgroup of G of finite index, with G/G` ∼= Γ/Γ`.

By an argument analogous to the proof of Proposition 3.3, G` is identified with the closure of Γ`
in G, and thus G` = {g ∈ G | Φ̂G(g)(U`) = U`}. That is, U` is an adapted set for the action

Φ̂G : G×Xϕ → Xϕ with stabilizer GU`
= G`. It follows that the isotropy group Dϕ at xϕ ∈ Xϕ of

the action ϕ̂G is given by ∩`≥0 G`, and so Πϕ(Dϕ) = Dϕ ⊂ Γ̂ϕ.

COROLLARY 3.4. The embedding ϕ̂G : G→ G restricts to an isomorphism ϕ̂G : Dϕ → Dϕ.

Proof. We have ϕ̂G(Dϕ) = ∩`≥0 ϕ̂G(G`) = ∩`≥0 G`+1 = Dϕ, so the restriction ϕ̂G : Dϕ → Dϕ is
onto. As ϕ̂G is an embedding, its restriction to Dϕ is injective. �

REMARK 3.5. We want to obtain a version of Proposition 3.3 for the completion Γ̂ϕ of Γ, in
place of the universal profinite completion G. That is, we will show that ϕ : Γ ↪→ Γ induces an open

embedding ϕ̂ : Γ̂ϕ ↪→ Γ̂ϕ (see Proposition 5.2 in the next section).

Unfortunately, the argument in Proposition 3.3 does not directly generalize to the case of the closure

of the action Γ̂ϕ. Indeed, in the above proof, the key idea is that the system N ′1 is cofinal in N1,
and this follows because N ′1 contains all normal cores (in Γ) of members of N1.

On the other hand, the group Γ̂ϕ is defined as the closure of the action group Φ(Γ) ⊂ Homeo(Xϕ),
and the map ϕ induces a natural isomorphism with the closure of the image ϕ(Γ) = Γ1 = ΓU1

in

Homeo(U1). In order to obtain an embedding of Γ̂ϕ into itself, we must relate the closure of Γ1 in
Homeo(U1) with that in Homeo(Xϕ). Thus, the above algebraic argument using normal cores needs

to be replaced by a dynamical argument. The key point is that one needs to show that if g ∈ Γ̂ϕ
acts trivially on U1, then it acts trivially on Xϕ. This dynamical regularity, i.e. that the action of

g ∈ Γ̂ϕ is determined by its behavior on any open set, is the goal of the next two sections.

4. Regularity of Cantor actions

In this section we recall the notion of quasi-analytic actions, and the localized version of this property.
This is a type of regularity property for Cantor actions, introduced in the works by Álvarez López,
Candel, and Moreira Galicia [1, 2], inspired by work of Haefliger [36]. We then consider this property
for the action ϕ̂G : G × Xϕ → Xϕ of the profinite completion G. In the following definitions, H
denotes a topological group which need not be countable.

DEFINITION 4.1. An action Φ: H × X→ X, where H is a topological group and X is a Cantor
space, is said to be quasi-analytic (or QA) if for each clopen set U ⊂ X, if the action of g ∈ H
satisfies Φ(g)(U) = U and the restriction Φ(g)|U is the identity map on U , then Φ(g) acts as the
identity on all of X.

Note that if an action is not quasi-analytic, then there is some g ∈ H whose action Φ(g) on X is
non-trivial, yet there is a clopen subset U such that the restriction of the action Φ(g) to U is the
identity, and thus the isotropy group for the action at a point x ∈ U is non-trivial. So, for example,
if the space X is homeomorphic to a profinite group H for which the action Φ is defined by group
multiplication, so that the action is induced by a group homomorphism Φ: H → H, then the action
is quasi-analytic. A topologically free action, as in Definition 2.1, is quasi-analytic. Conversely,
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the Baire Category Theorem implies that an effective quasi-analytic action of a countable group is
topologically free [53, Section 3].

A local formulation of the QA condition for actions was introduced in the works [23, 38], and has
proved very useful for the study of the dynamical properties of equicontinuous Cantor actions.

DEFINITION 4.2. An action Φ: H × X → X, where H is a topological group and X a Cantor
metric space with metric dX, is locally quasi-analytic (or LQA), if there exists ε > 0 such that for
any non-empty open set U ⊂ X with diam(U) < ε, and for any non-empty open subset V ⊂ U , if
the action of g ∈ H satisfies Φ(g)(V ) = V and the restriction Φ(g)|V is the identity map on V , then
Φ(g) acts as the identity on all of U .

Examples of minimal equicontinuous Cantor actions which are locally quasi-analytic, but not quasi-
analytic, are elementary to construct; some examples are given in [23, 38].

If (X, H,Φ) is an equicontinuous Cantor action which is not quasi-analytic, then the isotropy group
defined in (4) is non-trivial. On the other hand, there are actions with non-trivial isotropy group
that are quasi-analytic (see Section 9.3 below, and the examples in [23]). Finally, we define:

DEFINITION 4.3. An equicontinuous Cantor action (X,Γ,Φ) is said to be stable if the associated

profinite action Φ̂ : Φ(Γ)× X→ X is locally quasi-analytic. The action is said to be wild otherwise.

There are many examples of wild Cantor actions. For example, the actions of branch groups on the
boundaries of their associated trees are always wild [34]. The work [3] gives the construction of wild
Cantor actions exhibiting a variety of characteristic properties, using algebraic methods.

Here is our main technical result for the profinite actions associated to renormalizations.

THEOREM 4.4. Let Γ be a finitely generated group and ϕ : Γ→ Γ a renormalization of Γ. Then

the profinite action Φ̂G : G×Xϕ → Xϕ is quasi-analytic.

Proof. Let g ∈ G be such that Φ̂G(g) acts non-trivially on Xϕ. Suppose there exists a non-empty

open set U ⊂ Xϕ such that Φ̂G(g) acts on U as the identity.

The orbit of every point of Xϕ is dense in Xϕ under the action of Γ, so there exists h ∈ Γ such that

Φϕ(h)(xϕ) ∈ U . Set g′ = h−1gh so that Φ̂G(g′) fixes the open set U ′ = Φϕ(h−1)(U). In particular,

Φ̂G(g′) fixes xϕ and hence g′ ∈ Dϕ. Thus, we can assume without loss of generality that Φ̂G(g) acts
as the identity on U and xϕ ∈ U , so that g ∈ Dϕ.

The nested clopen sets U = {U` | ` ≥ 0} form a neighborhood basis at xϕ so there exists some
k0 > 0 such that Uk ⊂ U for all k ≥ k0. Thus, for all k ≥ k0 we have λkϕ(Xϕ) ⊂ U .

Recall that the restriction ϕ̂G : Dϕ → Dϕ is an automorphism by Corollary 3.4. Thus for g ∈ Dϕ

there is a well-defined element g` = ϕ̂`G(g) ∈ Dϕ for all ` ∈ Z.

LEMMA 4.5. Let g ∈ Dϕ, and suppose g acts trivially on Uk0 , for some k0 ≥ 0. Then for all

` ≥ k0, the action of g−` = ϕ̂−`G (g) ∈ Dϕ on Xϕ is trivial.

Proof. For x ∈ Xϕ and ` ≥ 0, set x` = λ`ϕ(x). Choose gx ∈ G such that x = gxDϕ via the
identification Xϕ

∼= G/Dϕ; that is, x is represented in Xϕ by the coset gxDϕ. Recall that under

this identification, for h ∈ G the action of Φ̂G(h) on Xϕ becomes left multiplication by h. That is,

Φ̂G(h)(x) = h · gxDϕ = hgx ·Dϕ. Then for ` ≥ k0 we have that

(13) x` = λ`ϕ(x) = λ`ϕ(gxDϕ) = ϕ̂`G(gx)Dϕ ∈ Uk0 .
Thus, for ` ≥ k0 we have

(14) x` = Φ̂G(g)(x`) = Φ̂G(g)(ϕ̂`G(gx)Dϕ) = g ϕ̂`G(gx)Dϕ .

So for g ∈ Dϕ and ` ≥ k0, using that ϕ̂G : G→ G is a homomorphism, we have

(15) x` = g ϕ̂`G(gx)Dϕ = ϕ̂`G(ϕ̂−`G (g)) ϕ̂`G(gx)Dϕ = ϕ̂`G(ϕ̂−`G (g)gx)Dϕ = ϕ̂`G(g−`gx)Dϕ .
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Thus for g ∈ Dϕ, x ∈ Xϕ and ` ≥ k0,

x = λ−`ϕ (x`) = λ−`ϕ (ϕ̂`G(g−`gx)Dϕ)(16)

= ϕ̂−`G (ϕ̂`G(g−`gx))Dϕ

= g−`gxDϕ = Φ̂G(g−`)(x) .

That is, Φ̂G(g−`)(x) = x for all x ∈ Xϕ and ` ≥ k0, as was to be shown. �

Note that for g ∈ G the equicontinuous action of ϕ̂G(g) on Xϕ is approximated by the action on
the finite quotient spaces X` for ` > 0. Thus, the assumption that ϕ̂G(g) acts non-trivially on
Xϕ implies there exists some m0 > 0 such that the induced action of ϕ̂G(g) on Xm0

= Γ/Γm0
is

non-trivial for some m0 > 0. Denote this action by Φ̂m0
(g) ∈ Perm(Xm0

), where Perm(Xm0
) is the

group of permutations of the finite set Xm0 , hence Perm(Xm0) is a finite group.

The second key observation required for the proof of Theorem 4.4 is the following “periodicity” of

the restricted action Φ̂m0
: Dϕ → Perm(Xm0

), which allows us to promote properties of the action
of g−` on small scales Uk (for k large) to global properties of the action of g.

LEMMA 4.6. Let g ∈ Dϕ. Then for every m0 ≥ 1, there exists N0 ≥ 1 such that for all ` ≥ 1 we

have Φ̂m0
(g−N0`) = Φ̂m0

(g).

Proof. Let m0 ≥ 1. We note the following two elementary properties of Hom(G,Perm(Xm0
)):

(1) For any σ ∈ Hom(G,Perm(Xm0)) and ` ≥ 0, we have σ ◦ ϕ̂`G ∈ Hom(G,Perm(Xm0)).
(2) Hom(G,Perm(Xm0)) is a finite set, as Γ is finitely generated and Perm(Xm0) is finite.

Indeed, every element in Hom(G,Perm(Xm0
)) is a group homomorphism, and so it is deter-

mined by its values on the generating set of a dense subgroup Γ of G, which is finite.

Now consider Φ̂m0 ∈ Hom(G,Perm(Xm0)). By properties (1) and (2) above, there exist 0 ≤ N1 < N2

such that Φ̂m0
◦ ϕ̂N2

G = Φ̂m0
◦ ϕ̂N1

G ∈ Hom(G,Perm(Xm0
)). In particular, their restrictions satisfy

Φ̂m0
◦ ϕ̂N2

G = Φ̂m0
◦ ϕ̂N1

G : Dϕ → Perm(Xm0
).

Now recall from Corollary 3.4 that ϕ̂G restricts to an automorphism on Dϕ, so that ϕ̂−N1

G : Dϕ → Dϕ

is well-defined. It follows that

Φ̂m0
◦ ϕ̂N2−N1

G = Φ̂m0
◦ ϕ̂N2

G ◦ ϕ̂
−N1

G = Φ̂m0
◦ ϕ̂N1

G ◦ ϕ̂
−N1

G = Φ̂m0
: Dϕ → Perm(Xm0

) .

Therefore N0 = N2 −N1 satisfies the conclusion of the lemma. �

We can now complete the proof that the action Φ̂G : G ×Xϕ → Xϕ is quasi-analytic. If not, then

there exists g ∈ Dϕ such that Φ̂G(g) acts non-trivially on Xϕ, and a non-empty open set U ⊂ Xϕ

with xϕ ∈ U such that ϕ̂G(g) acts on U as the identity.

Let m0 > 0 be such that the induced action of ϕ̂G(g) on Xm0
= Γ/Γm0

is non-trivial.

Then there exists some k0 > 0 such that Uk ⊂ U for all k ≥ k0. We assume that k0 ≥ m0.

By Lemma 4.5, for all ` ≥ k0 we have Φ̂m0(g−`)(x) = x for all x ∈ Xm0 .

By Lemma 4.6, there exists N0 > 0 so that Φ̂m0(g−N0`) = Φ̂m0(g) for all ` ≥ 0.

However, for N0` > k0 we obtain a contradiction, as Φ̂m0
(g) is assumed to act non-trivially on Xm0

while Φ̂m0
(g−N0`) acts trivially on Xm0

.

Thus, the action of Φ̂G must be quasi-analytic. �

Finally, note that Theorem 4.4 shows that the profinite action (Xϕ,G, Φ̂G) is quasi-analytic, so the
same holds for the action (Xϕ,Γ,Φϕ) obtained by restricting the action to the image Φϕ(Γ) ⊂ G.
Then the Baire Category Theorem implies (see [39, Proposition 2.2] for example) that if the action
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Φϕ is effective, that is if Φϕ : Γ→ Homeo(Xϕ) is injective, then the action (Xϕ,Γ,Φϕ) is topologically
free, as asserted in Theorem 1.2.

COROLLARY 4.7. Let Γ be a finitely generated group and ϕ : Γ → Γ a renormalization of Γ.

Then the profinite action Φ̂ϕ : Γ̂ϕ×Xϕ → Xϕ is quasi-analytic, and the action (Xϕ,Γ,Φϕ) is stable.

Proof. Let U ⊂ Xϕ be a clopen set and ĝ ∈ Γ̂ϕ such that Φ̂ϕ(ĝ) restricts to the identity on U .

Recall that Πϕ : G→ Γ̂ϕ is onto, so there exists g ∈ G such that Πϕ(g) = ĝ. Then the action Φ̂G(g)

restricts to the identity on U , so Φ̂G(g) acts as the identity on Xϕ by Theorem 4.4. �

5. Open embeddings

In this section, given a renormalization ϕ : Γ → Γ with associated Cantor action (Xϕ,Γ,Φϕ), we

obtain a structure theory for the profinite group Γ̂ϕ that is the key to the proof of Theorem 1.1.
Recall that Proposition 3.3 showed that the induced map ϕ̂G : G→ G of the profinite completion G
of Γ is an open embedding. We thus obtain by [58, Theorem 3.10], which is a reformulation of the
results of Reid in [52], the following structure theorem:

THEOREM 5.1. There exist closed subgroups Cϕ ⊂ G and Qϕ ⊂ G so that:

(1) G ∼= Cϕ oQϕ, where Cϕ is a pro-nilpotent normal subgroup of G;
(2) Cϕ is ϕ̂G-invariant, and ϕ̂G restricts to an open contracting embedding on Cϕ;
(3) Qϕ is ϕ̂G-invariant, and ϕ̂G restricts to an automorphism of Qϕ.

Moreover, let ê ∈ G be the identity element, then we have

(17) Cϕ = {g ∈ G | lim
n→∞

ϕ̂nG(g) = ê} , Qϕ =
⋂
n>0

ϕ̂nG(G) .

Next, we show that ϕ̂G induces an open embedding ϕ̂ : Γ̂ϕ → Γ̂ϕ as promised in Remark 3.5.

PROPOSITION 5.2. Let ϕ be a renormalization of the finitely-generated group Γ. Then ϕ induces

an injective homomorphism ϕ̂ : Γ̂ϕ → Γ̂ϕ whose image is a clopen subgroup of Γ̂ϕ.

Proof. Let N(Πϕ) = ker{Πϕ : G→ Γ̂ϕ} ⊂ G be the kernel of the homomorphism Πϕ. We claim that
ϕ̂G : G→ G descends to a homomorphism

(18) ϕ̂ : Γ̂ϕ ∼= G/N(Πϕ) −→ Γ̂ϕ ∼= G/N(Πϕ) .

Recall that Theorem 1.2 implies that for g ∈ G, the action of ϕ̂G(g) on Xϕ is locally determined.
In particular, the action ϕ̂G(g) is determined by its restriction to the clopen subset U1 = λϕ(Xϕ).

For g ∈ N(Πϕ), observe that ϕ̂G(g) acts as the identity on the clopen subset U1 = λϕ(Xϕ). As the

action Φ̂G is quasi-analytic, this implies that ϕ̂G(g) acts as the identity on Xϕ, and thus ϕ̂G(g) ∈
N(Πϕ). That is, ϕ̂G(N(Πϕ)) ⊂ N(Πϕ) ⊂ G, and thus we have the composition of homomorphisms

(19) ϕ̂ : Γ̂ϕ = G/N(Πϕ)→ ϕ̂(G)/ϕ̂(N(Πϕ))→ G/ϕ̂(N(Πϕ)→ G/N(Πϕ) = Γ̂ϕ

which defines the map (18). We claim that ϕ̂ is injective. If not, let γ ∈ Γ̂ϕ such that ϕ̂(γ) = Id.

That is, ϕ̂(γ) ∈ Γ̂ϕ acts as the identity on Xϕ. In particular, ϕ̂(γ) acts as the identity on λϕ(Xϕ),
so for x ∈ Xϕ,

λϕ(x) = ϕ̂(γ) · λϕ(x) = λϕ(γx) .

As λϕ is an injection, we have γx = x for all x ∈ Xϕ, and thus γ ∈ Homeo(Xϕ) is the identity, as
was to be shown. �

We use the conclusions of Theorem 5.1 and Proposition 5.2 to obtain:
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THEOREM 5.3. Let ϕ : Γ → Γ be a renormalization for the finitely generated group Γ, with

associated Cantor action (Xϕ,Γ,Φϕ). Let ϕ̂ : Γ̂ϕ → Γ̂ϕ be the embedding induced from ϕ. Then

there exists a closed pro-nilpotent normal subgroup N̂ϕ ⊂ Γ̂ϕ so that:

(1) Γ̂ϕ ∼= N̂ϕ oDϕ is a semi-direct product;

(2) N̂ϕ is ϕ̂-invariant, and ϕ̂ restricts to an open contracting embedding on N̂ϕ;
(3) Dϕ is ϕ̂-invariant, and ϕ̂ restricts to an automorphism of Dϕ.

Moreover, let ê ∈ Γ̂ϕ be the identity element, then we have

(20) N̂ϕ = {g ∈ Γ̂ϕ | lim
n→∞

ϕ̂n(g) = ê} , Dϕ =
⋂
n>0

ϕ̂n(Γ̂ϕ) .

Proof. Recall that by Theorem 5.1 the embedding ϕ̂G : G→ G induces an isomorphism G ∼= CϕoQϕ,
where Cϕ and Qϕ are characterized by the formulae in (17). First, we show:

LEMMA 5.4. Dϕ = ΠG(Qϕ) ⊂ Γ̂ϕ.

Proof. Recall that the clopen neighborhoods U` of xϕ are defined by (8), and for each ` ≥ 0 we have

U` = λ`ϕ(Xϕ). For each ` ≥ 0, define the clopen subset Û` = {γ ∈ Γ̂ϕ | Φ̂ϕ(γ)(U`) = U`} ⊂ Γ̂ϕ.

Also, recall that Dϕ = {γ ∈ Γ̂ϕ | γ · xϕ = xϕ}. As xϕ =
⋂
`≥0 U`, we then have Dϕ =

⋂
`≥0 Û`, and

so Û` = ϕ̂`(Γ̂ϕ) where ϕ̂ : Γ̂ϕ → Γ̂ϕ was defined in Proposition 5.2.

Recall that G` = ϕ̂`G(G) ⊂ G, and thus Û` = ΠG(G`). Then we have

(21) ΠG(Qϕ) = ΠG

⋂
`≥0

G`

 =
⋂
`≥0

ΠG(G`) =
⋂
`≥0

Û` = Dϕ ,

as was to be shown. �

Next, set N̂ϕ = ΠG(Cϕ) ⊂ Γ̂ϕ which is a pro-nilpotent closed subgroup. Then by an argument
exactly analogous to the proof of Lemma 5.4, we have

(22) N̂ϕ = {γ ∈ Γ̂ϕ | lim
`→∞

ϕ̂`(γ) = ê ∈ Γ̂ϕ} .

The proof of Theorem 5.3 now follows. �

Note that the identities (20) in Theorem 5.3 identify the images of the groups Cϕ and Qϕ in

Homeo(Xϕ) in terms of the dynamical properties of the action ϕ̂ on Γ̂ϕ.

The conclusions of Theorem 5.3 are illustrated in various examples of renormalizable groups and
self-embeddings in Section 9, and also by the examples in the works [49, 57, 58]. Moreover, the
conclusion that ϕ induces an automorphism of the discriminant group Dϕ has applications to the
constructions of examples of Cantor actions using the Lenstra method as given in [38, Section 8.2].

6. Finite discriminant

We next consider the consequences of Theorem 5.3, for Dϕ a finite group and prove Theorem 1.1.

Proof. (of Theorem 1.1) We first assume that the discriminant group Dϕ is trivial, and show
that the quotient group Γ/C(Gϕ) is nilpotent, where C(Gϕ) is the normal core of the intersection
K(Gϕ) =

⋂
`≥0 Γ` ⊂ Γ, as defined in (12). Recall that C(Gϕ) ⊂ Γ is identified with the kernel of the

homomorphism Φϕ : Γ→ Γ̂ϕ ⊂ Homeo(Xϕ), and that ϕ̂ : Γ̂ϕ → Γ̂ϕ was defined in Proposition 5.2.

Note that ϕ restricts to an isomorphism of K(Gϕ) by its definition, and so ϕ also maps C(Gϕ)
isomorphically to itself, and thus induces an embedding ϕ′ : Γ/C(Gϕ) → Γ/C(Gϕ). Then without
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loss of generality, we can replace Γ with Γ/C(Gϕ), so can assume that Φϕ : Γ→ Γ̂ϕ is an embedding,
and identify Γ with its image Φϕ(Γ). As we assume that Dϕ is trivial, by Theorem 5.3 we have

Γ̂ϕ ∼= N̂ϕ where N̂ϕ is a closed pro-nilpotent normal group.

Section 3 of the work [58] gives an overview of some of the structure theory of pro-nilpotent groups,

and we recall those aspects as required for the proof of Theorem 1.1. First, N̂ϕ admits a splitting

by [29, Theorem B] as N̂ϕ ∼= N̂∞ × N̂tor where N̂∞ is a torsion-free nilpotent group and N̂tor is a
torsion group with bounded exponent, by results of [41]. We now claim:

LEMMA 6.1. If Dϕ is trivial, then N̂tor is the trivial group.

Proof. Let πtor : N̂ϕ → N̂tor be the projection, then the image πtor(Γ) ⊂ N̂tor is dense.

The abelianization Âtor of N̂tor is an abelian group of bounded exponent, which is trivial if and

only if N̂tor is trivial. By Prüfer’s First Theorem (see § 24 of [42]), Âtor is a direct sum of (possibly

infinitely many) cyclic groups. As Γ is finitely generated, the image of Γ in Âtor is finite rank and

dense, and therefore the abelianization Âtor has finite rank. Thus, Âtor is a direct sum of finitely
many cyclic groups, hence is a finite group.

Note that the contraction mapping ϕ̂ : N̂ϕ → N̂ϕ induces a contraction mapping ϕ̂tor : N̂tor → N̂tor.

The second part of Theorem B in Glöckner and Willis [29] proves the existence of a Jordan-Hölder
series for bounded exponent contraction groups with each composition factor a simple contraction
group. Here we say a contraction group with contraction α is simple if it has no nontrivial, proper
closed normal α-invariant subgroup. Further, the simple contraction groups are classified as shifts

on FN where F is a finite simple group. By considering the first composition factor, we see that N̂tor
has a quotient of the form FN where F is a finite simple group. Since N̂tor is solvable of bounded

exponent [52], we conclude that F is abelian. In particular N̂tor has an infinite abelian quotient,

which contradicts the fact that Âtor is a finite group, as shown previously. It follows that N̂tor must
be the trivial group �

Since by assumption Dϕ is trivial, then Γ ⊂ N̂∞. Now observe that by Lemma 6.1, N̂∞ is a torsion-
free nilpotent group, thus Γ is nilpotent. This concludes the proof of Theorem 1.1 in the case where
Dϕ is trivial.

Next, assume that Dϕ is a finite group. By Theorem 5.3, we have Dϕ = ΠG(Qϕ) ⊂ Γ̂ϕ and its

intersection with N̂ϕ = ΠG(Cϕ) is the trivial subgroup. As Dϕ is a finite group, it follows that N̂ϕ
is a clopen subset of Γ̂ϕ, and so Λϕ ≡ Γ ∩ N̂ϕ is a dense subgroup of N̂ϕ

The restriction of ϕ̂ defines a contraction mapping ϕ̂ : N̂ϕ → N̂ϕ. We can thus apply the above

arguments for the case when Dϕ is trivial to the action of Λϕ on N̂ϕ to conclude that Λϕ is nilpotent.
As Λϕ has finite index in Γ, this completes the proof of Theorem 1.1.

Proof. (of Theorem 1.5) Assume that both Dϕ and the subgroup K(Gϕ) in (12) are finite groups.
Thus its core C(Gϕ) ⊂ K(Gϕ) is also finite. Recall that in the above proof of Theorem 1.1, we
replaced Γ with the quotient Γ/C(Gϕ), and concluded that Γ/C(Gϕ) contains a nilpotent subgroup
of finite index. In the case where both groups Dϕ and K(Gϕ) are trivial, then the claim of the
corollary follows directly from Theorem 1.1 and Theorem 5.3. In the case where both groups are
finite, we have that C(Gϕ) is a finite normal subgroup of Γ and Γ/C(Gϕ) contains a nilpotent
subgroup of finite index, which implies that Γ contains a nilpotent subgroup of finite index. This
completes the proof. �

REMARK 6.2. We clarify the relation between the groups K(Gϕ) and Dϕ in the hypothesis of
Theorem 1.5. The group K(Gϕ) contains every element of Γ which fixes the base point xϕ, while the

group Dϕ contains every element in Γ̂ϕ which fixes xϕ. The relationship between K(Gϕ) and Dϕ is

provided by an embedding Γ → Γ̂ϕ ⊂ Homeo(Xϕ). It follows that if Dϕ is a finite group, then the
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quotient group K(Gϕ)/C(Gϕ) must be finite, where C(Gϕ) is the normal core of K(Gϕ). Thus if Dϕ
is finite, K(Gϕ) may still be infinite if its normal core C(Gϕ) is infinite. Thus both assumptions in
(12) in Theorem 1.5 are necessary.

7. Renormalizable Cantor actions

In this section, we introduce the notions of (virtually) renormalizable Cantor actions, and study
their regularity properties and invariants, yielding a proof of Theorem 1.6.

7.1. Renormalizable actions. For a Cantor action (X,Γ,Φ) and an adapted set U ⊂ X, note that
HU = Φ(ΓU ) ⊂ Homeo(U) acts faithfully on U , so (U,HU ,ΦU ) is always an effective action.

DEFINITION 7.1. A Cantor action (X,Γ,Φ) is renormalizable if it is equicontinuous, and there
exists an adapted proper clopen set U ⊂ X such that the actions (X,Γ,Φ) and (U,HU ,ΦU ) are
isomorphic (as in Definition 2.6) by a homeomorphism λ : X → U and isomorphism Θ: Γ → HU ,
and the intersection ∩`≥0 λ

`(X) is a point.

For example, let (Xϕ,Γ,Φϕ) be the Cantor action associated to a renormalization ϕ of Γ. Suppose
the action is effective, then by Theorem 1.2 it is topologically free, and thus the map ΦU : ΓU → HU

is an injection. Then the action is renormalizable with λ = λϕ and Θ = ΦU ◦ϕ : Γ→ HU . In general,
for a renormalizable action, there is no requirement that the map ΦU : ΓU → HU is injective, and
so HU need not be identified with a subgroup of Γ.

DEFINITION 7.2. A Cantor action (X,Γ,Φ) is virtually renormalizable if it is equicontinuous,
and there exists an adapted set V ⊂ X such that the restricted action (V,HV ,ΦV ) is renormalizable.

The class of virtually renormalizable actions is much more general than the renormalizable actions,
as it allows for the case when the action map Φ: Γ → Homeo(X) has a non-trivial kernel. In the
following, we show some properties of these actions. We first show:

PROPOSITION 7.3. Suppose that the Cantor action (X,Γ,Φ) is renormalizable and locally quasi-
analytic, then it is quasi-analytic.

Proof. We assume there is given a homeomorphism λ : X→ U and group isomorphism Θ: Γ→ HU

implementing an isomorphism of (X,Γ,Φ) with (U,HU ,ΦU ) as in (5).

First, suppose that the map ΦU : ΓU → HU is injective, and hence is an isomorphism, as it is onto
by the definition of HU . Then the composition ϕ ≡ Φ−1

U ◦Θ: Γ→ Γ is a proper inclusion with image
ΓU ⊂ Γ. As U is adapted, ΓU has finite index in Γ, and thus ϕ is a renormalization of Γ. It follows
from Theorem 1.2 that the action Φ is quasi-analytic.

It thus suffices to show that if ΦU : ΓU → HU has a non-trivial kernel KU ⊂ Γ, then the action Φ is
not locally quasi-analytic, which yields a contradiction. We show this using a recursive argument.

Set U0 = X, then U1 = λ(X) is a clopen set by assumption. Also define clopen sets U` = λ`(U0) for
` > 1, so that U` ⊂ U`−1. The assumption in Definition 7.1 that the intersection ∩`≥0 λ

`(X) is a
point, denoted by xλ ∈ X, implies that {U` | ` ≥ 0} is an adapted neighborhood basis at xλ.

Now set Γ` = ΓU`
for ` ≥ 0, and let H` = ΦU`

(Γ`) ⊂ Homeo(U`) for ` ≥ 0. Let {Γ` | ` ≥ 0} be the
associated group chain. Recall that as the action of H1 on U1 is effective, and the actions (X,Γ,Φ)
and (U1, H1,ΦU1

) are isomorphic, so the action of Γ on X is effective. That is, the kernel K0 ⊂ Γ
of Φ is trivial, and Φ: Γ → H0 is an isomorphism onto. To avoid cumbersome notation, we will
identify Γ = H0 and write the action as g · x = Φ(g)(x).

Now observe that

Γ`+1 = {g ∈ Γ | g · U`+1 = U`+1} = {g ∈ Γ` | g · U`+1 = U`+1} = (ΓU`
)U`+1

since g · U`+1 = U`+1 implies g · U` = U`, as U` is an adapted clopen set and U`+1 ⊂ U`.
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We give the first step of the recursive argument. Define

(23) K1 ≡ ker {ΦU1 : Γ1 → H1 ⊂ Homeo(U1)} ⊂ Γ1 ⊂ Γ .

By assumption, the subgroup K1 is non-trivial.

Let Φ1
U1

: H1 × U1 → U1 denote the action of H1, and let (H1)U2 ⊂ H1 denote the elements of H1

which map U2 to itself. Then introduce the subgroup K ′2 ⊂ (H1)U2
of elements which restrict to the

identity on U2. Then we have:

K ′2 = ker
{

Φ1
U2

: (H1)U2
→ Homeo(U2)

}
= ker

{
Φ1
U2

: (H1)λ(U1) → Homeo(λ(U1))
}

(24)

= ker
{

Φ1
U2

: Θ(Γ)λ(U1) → Homeo(λ(U1))
}

= Θ (ker {ΦU1 : ΓU1 → Homeo(U1)}) = Θ(K1) ,

where the last equality follows using the isomorphism of (X,Γ,Φ) with (U1, H1,ΦU1).

By assumption K1 is a non-trivial subgroup, so by (24) we have K ′2 = Θ(K1) is also non-trivial.
That is, if g ∈ K1 ⊂ Γ1 is not the identity, then g acts non-trivially on U0 = X and restricts to
the identity on U1 by the definition (23) of K1. Thus, h = Θ(g) ∈ H1 acts non-trivially on U1 and
restricts to the identity on U2. Since H1 = ΦU1

(Γ1), there exists g′ ∈ Γ1 such that ΦU1
(g′) = h. We

have found g′ ∈ Γ1, such that g′ /∈ K1 and g′ ∈ K2. Therefore, K1 is a non-trivial proper subgroup
of K2.

Set K` = ker{ΦU`
: Γ` → Homeo(U`)} for ` ≥ 2, then by repeating the above arguments in (24),

we have K` ⊂ K`+1 ⊂ Γ is a proper inclusion for all ` ≥ 1. As the diameter of the sets U` tends
to 0 as ` increases, given any adapted set V ⊂ X for the action Φ, there exist ` > 0 and γ ∈ Γ
such that O = γ · U` ⊂ V . This implies that the dynamics of Γ` acting on U` is conjugate to the
restricted action of ΓV on the adapted clopen set O. Thus, there exists some element γ′ ∈ Γ such
that γ′ ·O = O and the action of Φ(γ′) restricted to O is non-trivial, but restricts to the identity on
some open set that is a translate of U`+1 in O, namely γ′ = γ−1 ◦ s ◦ γ, where s ∈ K`+1 and s /∈ K`.
As this holds for all ` > 0, the action Φ is not locally quasi-analytic. �

We have the following consequence of the above proof of Proposition 7.3.

PROPOSITION 7.4. Suppose that the Cantor action (X,Γ,Φ) is renormalizable and locally quasi-
analytic, then the action is isomorphic to an action (Xϕ,Γ,Φϕ) associated to a renormalization
ϕ : Γ→ Γ, and in particular Γ is renormalizable, and the action (X,Γ,Φ) is stable.

Proof. As in the proof of Proposition 7.3, let {U` | ` ≥ 0} be an adapted neighborhood basis at
xϕ, and let {Γ` | ` ≥ 0} is the associated group chain. The action (X,Γ,Φ) is quasi-analytic
by Proposition 7.3, so we have isomorphisms Γ` ∼= H`, and in particular the composition ϕ ≡
Φ−1
U1
◦Θ: Γ→ Γ is a proper inclusion with image Γ1 ⊂ Γ a subgroup of finite index. It then follows

that Γ` = ϕ`(Γ), and by the results in Section 3 (see also [15, 22, 23]) the Cantor action (X,Γ,Φ) is
isomorphic to the action (Xϕ,Γ,Φϕ). Then the action (X,Γ,Φ) is stable by Corollary 4.7. �

As a consequence of the above, we have the following result, which implies Theorem 1.6.

THEOREM 7.5. Let ϕ be a renormalization of Γ, then (Xϕ,Γ,Φϕ) is virtually renormalizable.
Conversely, suppose that a minimal equicontinuous Cantor action (X,Γ,Φ) is renormalizable and
locally quasi-analytic, then Γ is renormalizable, and there is a renormalization ϕ such that (X,Γ,Φ)
is isomorphic to (Xϕ,Γ,Φϕ).

7.2. Renormalizable actions on trees. We will now discuss the relationship between renormal-
izable actions on Cantor sets and self-similarity properties of groups acting on rooted trees. Recall
that, given a group chain {Γ`}`≥0 consisting of finite index subgroups of Γ = Γ0, the tree model is a
natural action of Γ on a rooted tree (see Section 3.1). We start by briefly recalling this construction.
As in the rest of the paper, the action of Γ ⊂ Aut(T ) on the boundary of T is assumed minimal in
this section.
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Recall that V` = X` = Γ/Γ`, and V =
⊔
`≥0 V` is the vertex set of a tree T . The boundary ∂T of T

consists of all infinite connected paths (v`)`≥0 ∈ ∂T . Let ê = (e`)`≥0 = (e · Γ`) be the path passing
through the coset of the identity e ∈ Γ at each level V`. Then, as in (8), for k ≥ 0 the set

Uk = {(w`)`≥0 ∈ ∂T | w` = e · Γ`, 0 ≤ ` ≤ k} = {(w`)`≥0 ∈ ∂T | wk = e · Γk}(25)

is a clopen neighborhood of ê and Γk is the stabilizer subgroup of Uk. Since the action of Γ on ∂T
is minimal, the induced action of Γ on each vertex level V` is transitive, for ` ≥ 0.

We now discuss Definition 7.1 of a renormalizable action as applied to actions on rooted trees,
described in the previous paragraph. Suppose the action (∂T,Γ) is renormalizable with U = U1.
The set U1 contains all infinite paths in ∂T which pass through the vertex e1 = e · Γ1, and every
element in Γ1 fixes e1. For each g ∈ Γ1 ⊂ Aut(T ), denote by g1 = g|U1 the restriction. If the action
(∂T,Γ) is quasi-analytic, then there is precisely one element g ∈ Γ which restricts to g1, and so the
map ΦU1 : Γ1 → HU1 is invertible. As discussed at the beginning of this section, in this case there
is an injective homomorphism ϕ = Φ−1

U1
◦Θ : Γ→ Γ1 ⊂ Γ. In particular, the conditions that (∂T,Γ)

is quasi-analytic and minimal implies that there are no elements in Γ whose support is contained
entirely in U1, and it follows that the class of groups which admit renormalizations does not contain
weakly branch groups (see [7, 33] for more details about weakly branch groups).

If the action (∂T,Γ) is renormalizable but not quasi-analytic, then the elements in HU1
can be

extended from U1 to ∂T in multiple ways, and Γ may have elements with support contained entirely
in U1. Such renormalizable actions are wild. Some actions of branch groups belong to this class, for
instance, the action of the Grigorchuk group, as we show below.

We will show that renormalizability of the action of Γ on ∂T is closely related to the self-replicating
property of the action of Γ on T . Given a vertex v` ∈ V , let v`T be a subtree of T with root v`.
Fix an isomorphism of rooted trees pv` : T → v`T and let ∂pv` : ∂T → ∂(v`T ) be the induced
homeomorphism of boundaries. Note that the inclusion v`T ↪→ T also induces a homeomorphism
between ∂(v`T ) and the clopen subset Uv` of ∂T that consists of all paths passing through the vertex
v`. If v` = e`, then Uv` = U` for the set U` defined in (25).

Denote by Γv` the subgroup of elements g ∈ Γ which fix v` and so preserve Uv` . For g ∈ Γv` denote
by g` = g|Uv` the restriction, and consider the pullback p∗` g` to ∂T . We refer to [33] for a precise
definition of a self-replicating group, but it implies that for any v` ∈ V` and any ` ≥ 0, the morphisms

(26) p̃` : Γv` → Aut(T ) : g 7→ p∗` g` = p∗` (g|Uv`)

have image in Γ ⊂ Aut(T ) and are surjective onto Γ. We are now in the position to establish the
connection between self-replicating groups and renormalizable actions.

PROPOSITION 7.6. Let Γ be a self-replicating group acting on the boundary ∂T of a regular tree
T . Then the action (∂T,G) is renormalizable in the sense of Definition 7.1.

Proof. In the notation of above, fix the vertex v` = e · Γ`, so Uv` = U` and Γv` = Γ`. The group
HU`

⊂ Homeo(U`) is a quotient group of Γ`. The pullback map p∗` : HU`
→ Γ is clearly an injective

group homomorphism, as HU`
is a group of homeomorphisms of a subtree. The map p∗` is surjective

by the definition of a self-replicating group and (26). It follows that the action of Γ is renormalizable
with maps λ = p` : ∂T → ∂(v`T ) and Θ = (p∗` )

−1 : Γ→ HU`
. �

An example of a group whose action is renormalizable and not quasi-analytic is the Grigorchuk
group, which is known to be self-replicating [33]. We refer to [33] for other examples of self-replicating
groups, acting on trees, and to [8] for the overview of the relation between the notions of self-similar
groups and other notions of renormalizability, for instance that of tilings.

Grigorchuk [33, Proposition 11.6] showed that a countable self-replicating group Γ which acts freely
on the boundary ∂T of a tree T is scale-invariant, see the Introduction for the definitions. Nekra-
shevych and Pete [49] provided examples of finitely generated scale-invariant groups that are not



18 STEVEN HURDER, OLGA LUKINA, AND WOUTER VAN LIMBEEK

strongly scale-invariant. Our results can be used to strengthen Grigorchuk’s result in [33, Proposi-
tion 11.6] for free actions of finitely generated self-replicating groups to show that they are strongly
scale-invariant.

PROPOSITION 7.7. Let Γ be a finitely generated self-replicating group, and suppose the action
of Γ on the boundary ∂T of a regular tree T is free. Then Γ is strongly scale-invariant.

Proof. By the argument above the action of a self-replicating group is renormalizable, and if it is
free, then it is quasi-analytic. Then by Proposition 7.4 Γ is strongly scale-invariant, that is, there is
a renormalization ϕ : Γ→ Γ, and the group chain {ϕ`(Γ) | ` ≥ 0} has trivial intersection. �

It is natural to ask if the converse of Proposition 7.6 holds, that is, if an effective renormalizable action
is always that of a self-replicating group of homeomorphisms. In Definition 7.1 of a renormalizable
action the map Θ : Γ→ HU is allowed to be any group isomorphism, introducing a possibility of a
‘twist’. We leave the question whether the converse holds as an open problem.

PROBLEM 7.8. Let (X,Γ,Φ) be an effective renormalizable Cantor action, and suppose (X,Γ,Φ)
is conjugate to an action of Γ on (∂T,Γ), where ∂T is the boundary of a regular tree T . Prove that
Γ is a self-replicating group, or find a counterexample to this statement.

8. Continuous orbit equivalence

We next give the proofs of Theorems 1.7 and 1.8, which consider the properties of renormalizable
actions which are preserved by continuous orbit equivalence.

8.1. Proof of Theorem 1.7. Let (X,Γ,Φ) and (X′,Γ′,Φ′) be minimal equicontinuous Cantor ac-
tions which are continuously orbit equivalent, and assume that (X,Γ,Φ) is renormalizable and locally
quasi-analytic. We claim that (X′,Γ′,Φ′) is virtually renormalizable.

First note that by Proposition 7.3, the action (X,Γ,Φ) is quasi-analytic, and by Proposition 7.4,
there exists a proper self-embedding ϕ : Γ → Γ such that the action (X,Γ,Φ) is isomorphic to the
action (Xϕ,Γ,Φϕ). Thus, the Cantor actions (Xϕ,Γ,Φϕ) and (X′,Γ′,Φ′) are continuously orbit
equivalent, where (Xϕ,Γ,Φϕ) is quasi-analytic by Theorem 1.2, and stable by Corollary 4.7. Then
Theorem 6.9 of [40] implies that (X′,Γ′,Φ′) is locally quasi-analytic.

The hypotheses of Theorem 1.5 in [39] are then satisfied, so that (Xϕ,Γ,Φϕ) is return equivalent
to (X′,Γ′,Φ′). Thus, there exists adapted sets V ⊂ Xϕ for the action (Xϕ,Γ,Φϕ) and V ′ ⊂ X′ for
the action (X′,Γ′,Φ′), so that the restricted actions (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) are isomorphic,
where HV = ΦV (ΓV ) ⊂ Homeo(V ) and H ′V ′ = Φ′V ′(Γ′V ′) ⊂ Homeo(V ′).

Let xϕ ∈ Xϕ denote the fixed-point for the contraction λϕ : Xϕ → Xϕ. The action (Xϕ,Γ,Φϕ) is
minimal, so by conjugating by an element of Γ, we can assume that xϕ ∈ V .

Let h : V → V ′ be a homeomorphism and Θ: HV → H ′V ′ a group isomorphism which realizes the
isomorphism between (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) as in Definition 2.6.

For the action (Xϕ,Γ,Φϕ), we have an adapted neighborhood basis {U` = λ`(Xϕ) | ` ≥ 0} and a
group chain Gϕ = {Γ` = ϕ`(Γ) | ` ≥ 0} as before.

Choose `0 > 0 sufficiently large so that U`0 ⊂ V and h(U`0) ⊂ V ′. Then set W = U`0 . Note that
λϕ(U`) = U`+1 for all ` ≥ 0, so W1 = λϕ(W ) ⊂ W . Set W ′ = h(W ) ⊂ V ′ and W ′1 = h(W1) ⊂ W ′.
Then the restriction of ϕ to ΓW = Γ`0 yields a proper self-embedding ϕW : ΓW → ΓW .

Since the action (Xϕ,Γ,Φϕ) is quasi-analytic, the map ΦW : ΓW → HW is an isomorphism. Thus,
ϕW induces a proper self-embedding ϕ̂W : HW → HW . Then set H` = ϕ̂`W (HV ) for all ` ≥ 0. It
then follows from the constructions that the Cantor action (W,HW ,ΦW ) is isomorphic with the
Cantor action associated to ϕ̂W : HW → HW .
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Finally, the isomorphism between (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) restricts to an isomorphism be-
tween (W,HW ,ΦW ) and (W ′, H ′W ′ ,Φ′W ′) which then defines a self-embedding of H ′W ′ . Thus, the
Cantor action (X′,Γ′,Φ′) is virtually renormalizable. This completes the proof of Theorem 1.7.

8.2. Proof of Theorem 1.8. Let (Xϕ,Γ,Φϕ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) be Cantor actions associated

to renormalizations ϕ : Γ → Γ and ϕ′ : Γ′ → Γ′, respectively. Assume that (Xϕ,Γ,Φϕ) and
(X ′ϕ′ ,Γ′,Φ′ϕ′) are continuously orbit equivalent. We must show that the discriminant groups Dϕ
and D′ϕ′ for these actions are isomorphic.

By Corollary 4.7, the actions (Xϕ,Γ,Φϕ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) are quasi-analytic and stable. Then

Theorem 1.5 in [39] implies that the actions (X,Γ,Φ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) are return equivalent.

Thus, there exist adapted sets V ⊂ X for the action (X,Γ,Φ) and V ′ ⊂ X′ for the action (X′,Γ′,Φ′)
so that the restricted actions (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) are isomorphic, where recall that
HV = ΦV (ΓV ) ⊂ Homeo(V ) and H ′V ′ = Φ′V ′(Γ′V ′) ⊂ Homeo(V ′). As the actions are quasi-analytic,
the maps ΦV and Φ′V ′ are monomorphisms, hence are isomorphisms. Thus, the actions (V,ΓV ,ΦV )
and (V ′,Γ′V ′ ,Φ′V ′) are isomorphic, induced by a homeomorphism h : V → V ′.

Let DV denote the discriminant group for the restricted action (V,ΓV ,ΦV ). Then by the arguments
in [38, Section 4], there is a surjective map ρX,V : Dϕ → DV which is an isomorphism when the

profinite action Φ̂ϕ : G × Xϕ → Xϕ is quasi-analytic. Likewise, for the discriminant D′V ′ of the
action (V ′,Γ′V ′ ,Φ′V ′), there is an isomorphism ρX′,V ′ : Dϕ′ → D′V ′ .

The isomorphism class of the discriminant group is an invariant for isomorphism of Cantor actions,
so we conclude Dϕ ∼= DV ∼= D′V ′

∼= D′ϕ′ as claimed. This completes the proof of Theorem 1.8.

9. Applications and Examples

In this section, we discuss some of the applications of the results of this paper, then give a selection
of examples to illustrate these results.

For a compact manifold M without boundary, an expansive diffeomorphism φ : M → M gives rise
to a renormalization ϕ : Γ → Γ of the fundamental group Γ = π1(M,x). In this case, Shub showed
in [56] that the universal covering of M has polynomial growth type, and hence by Gromov [35]
the group Γ has a finite-index nilpotent subgroup. There are a variety of constructions of expansive
diffeomorphisms on nilmanifolds, and the invariants associated to the renormalization ϕ of Γ are
then invariants of the expansive map φ.

The construction of generalized Hirsch foliations in [10, 37] is based on choosing a renormalization
ϕ : Γ→ Γ of the fundamental group of a compact manifold M . Thus, invariants of the renormaliza-
tion yield invariants for this genre of foliated manifolds.

The classification of M -like laminations, where M is a fixed compact manifold, is reduced to the
classification of renormalizations in the work [13].

These applications are all based on the constructions of renormalizations for groups with the non-
co-Hopfian property. Many finitely generated nilpotent groups are renormalizable, as shown for
example in [9, 14, 17, 18, 19, 43]. There is also a variety of examples of renormalizable groups which
are not nilpotent, as described for example in [20, 26, 30, 31, 32, 49, 51, 58]. While these works
show the existence of a proper self-embedding for a particular class of groups, they do not calculate

the groups Dϕ and N̂ϕ which are associated to an embedding ϕ by Theorem 5.3. In the following,
we make these calculations for a selected set of examples of renormalizable groups.

In Section 9.1 we give a basic example of a renormalizable Cantor action, where the group Γ is not
finitely generated, and Γ is not virtually nilpotent.

In Section 9.2 we give a basic example of the cross-product construction of renormalizable groups,
for which the discriminant is a non-trivial finite group.
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In Section 9.3 we calculate the discriminant Dϕ and the induced map ϕ̂ : Dϕ → Dϕ for an “untwisted”
embedding ϕ : H → H of the Heisenberg group H.

In Section 9.4 we give an example of a renormalizable group that arises in the study of arboreal
representations of absolute Galois groups of number fields.

9.1. Infinitely generated actions. The assumption that Γ is finitely generated is essential for the
conclusion of Theorem 1.1, as shown by the following example. Let F be a finite nonabelian simple
group and set Γ := ⊕∞i=0F . Then Γ is a countable group, but not finitely generated.

Observe that Γ admits a renormalization, given by by the shift map, ϕ(f0, f1, . . .) = (e, f0, f1, . . .),
for e ∈ F the identity element. The associated Cantor space is the infinite product Xϕ =

∏∞
0 F .

The action Φϕ of Γ on Xϕ is free, so the discriminant Dϕ is trivial in this case. However, Γ is not
virtually nilpotent.

9.2. Multihedral groups. This is an elementary example of a group Γ with self-embedding ϕ and
non-trivial finite discriminant group Dϕ ⊂ Γ.

Let Λ = Zk be the free abelian group on k generators. Let H ⊂ Perm(k) be a non-trivial subgroup
of the finite symmetric group Perm(k) on k symbols, and assume that H is a simple group. Let
Perm(k) ⊂ GL(k,Z) be the standard embedding permuting the coordinates.

Let Γ = Zk oH be the semi-direct product of these groups. Fix m > 1, then define ϕ : Γ→ Γ to be
multiplication by m on the Zk factor. That is, for (~v, g) ∈ Γ set ϕ(~v, g) = (m · ~v, g). Then

Γ` = {(m` · ~v, g) | ~v ∈ Zk , g ∈ H} = m`Zk oH(27)

K(Gϕ) = {(0, 0, g) | g ∈ H} ∼= H .(28)

where Gϕ = {Γ` | ` ≥ 0}. Then we have Xϕ
∼= Ẑkm, the product of k-copies of the inverse limit

space Ẑm = lim
←−
{Z/mk+1Z→ Z/mkZ, k ≥ 0}. The subgroup H acts on Xϕ by permutations of the

coordinates, so the adjoint action on Xϕ of a non-identity element g ∈ H is a non-trivial permutation
of the coordinate axes, hence is non-trivial. Thus, the normal core C(Gϕ) ⊂ K(Gϕ) is trivial, and we
have K(Gϕ) ⊂ Dϕ. Thus, a calculation shows that the normal core C` ⊂ Γ` is the subgroup of (27)

where g = e ∈ H is the identity, so Γ`/C` ∼= H for all ` > 0. Thus, Dϕ ∼= H. Also, the subgroup N̂ϕ
is the product of k copies of Ẑm, or the m-adic k-torus.

Observe that the map ϕ restricts to the identity on the subgroup H, while ϕ acts as multiplication
by m on the normal subgroup Zk. Thus, ϕ̂ : Dϕ → Dϕ in Theorem 5.3, item 3, is the identity map,

and ϕ̂ : N̂ϕ → N̂ϕ in Theorem 5.3, item 2, is induced by coordinate-wise multiplication by m on Zk.

9.3. Nilpotent endomorphisms. The 3-dimensional Heisenberg group H is the simplest non-
abelian nilpotent group, and we give a self-embedding for which Dϕ is an infinite profinite group.

A general construction for self-embeddings of 2-step nilpotent groups is given by Lee and Lee in [43],
of which this example is a special case. More generally, group chains in H were studied in detail by
Lightwood, Şahin and Ugarcovici in [45], where they give a complete description for the subgroups
of H and a characterization of which subgroups are normal. This work also gives a discussion of
twisted and untwisted subgroups of the Heisenberg group, which can be used to construct further
examples of renormalizations.

Group chains in H whose discriminant invariant is an infinite group were first constructed by Dyer
in her thesis [21], and also described in [22, Example 8.1]. In the following, we construct such a
group chain realized via a self-embedding of H.

Let H be represented as (Z3, ∗) with the group operation ∗, so for x, u, y, v, z, w ∈ Z we have,

(29) (x, y, z) ∗ (u, v, w) = (x+ u, y + v, z + w + xv) , (x, y, z)−1 = (−x,−y,−z + xy) .
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This is equivalent to the upper triangular representation in GL(Z3). In particular, we have

(30) (x, y, z) ∗ (u, v, w) ∗ (x, y, z)−1 = (u, v, w + xv − yu) .

For integers p, q > 0 define ϕ : H → H by a self-embedding by ϕ(x, y, z) = (px, qy, pqz). Then

H` = ϕ`(H) = {(p`x, q`y, (pq)`z) | x, y, z ∈ Z} ,
⋂
`>0

H` = {e} .

Now assume that p, q > 1 are distinct prime numbers. Formula (30) implies that the normal core
for H` is given by

C` = core(H`) = {((pq)`x, (pq)`y, (pq)`z) | x, y, z ∈ Z} .

Thus, the finite group

(31) Q` = H/C` = {(x, y, z) | x, y, z ∈ Z/(pq)`Z} .

The profinite group Ĥ∞ is the inverse limit of the quotient groups Q` so we have

Ĥ∞ = {(x, y, z) | x, y, z ∈ Ẑpq}

with multiplication on each finite quotient induced given by the formula (30). To identify the
discriminant subgroup D∞ first note

H`/C` = {(p`x, q`y, 0) | x ∈ Z/q`Z, y ∈ Z/p`Z} ⊂ Q` ,(32)

H`+1/C`+1 = {(p`+1x, q`+1y, 0) | x ∈ Z/q`+1Z, y ∈ Z/p`+1Z} .(33)

The bonding map q`+1 : H`+1/C`+1 → H`/C` from the definition (11) for D∞ is induced from the
inclusion H`+1 ⊂ H` modulo quotient by

H`+1 ∩ C` = {(p`+1q`x, p`q`+1y, (pq)`+1z) | x, y, z ∈ Z} .

Thus, in terms of the coordinates x, y in (33) the bonding map is given by

q`+1(x, y, 0) = (x mod q`Z, y mod p`Z, 0) .

It then follows by formula (11) that

(34) Dϕ ∼= D∞ = lim←− {q`+1 : H`+1/C`+1 → H`/C` | ` ≥ 0} ∼= Ẑq × Ẑp .

The induced map ϕ̂ : Dϕ → Dϕ is given by multiplication by p on Ẑq in the first x-coordinate, and

multiplication by q on Ẑp in the second y-coordinate, so that ϕ̂ acts as an isomorphism on Dϕ, as
asserted in Theorem 5.3.

Finally, consider the subgroup of Q` in (31) which is complementary to the subgroup H`/C`,

(35) N` = {(q`x, p`y, z) | x ∈ Z/p`Z, y ∈ Z/q`Z, z ∈ Z/(pq)`Z} ⊂ Q` .

The map ϕ induces a map on N` given by multiplication by p in the first x-coordinate, and multi-
plication by q in the second y-coordinate, so the action is nilpotent on N`. The inverse limit of the

groups N` is a subgroup of Ĥ∞ identified with

N̂ϕ ∼= Ĥ∞/D∞ ∼= {(x, y, z) | x ∈ Ẑp , y ∈ Ẑq , z ∈ Ẑpq} ,

and is a pro-nilpotent group as it has the finite nilpotent groups N` as quotients. Moreover, the

induced map ϕ̂ : N̂ϕ → N̂ϕ is a contraction, as asserted in Theorem 5.3.

Note that if we take p = q in the above calculations, so ϕ : H → H is the “diagonal expansion” by
p on the abelian factor Z2, then H2` ⊂ C`. So while each quotient H2`/C2` is non-trivial, its image
under the composition of bonding maps in (11) vanishes in H`/C`, hence Dϕ is the trivial group in
the inverse limit. Correspondingly, the inverse limit space Xϕ has a well-defined group structure.
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9.4. Semi-direct product of dyadic integers with its group of units. This example can be
viewed as a more sophisticated version of Example 9.2. It arises, in particular, as the profinite arith-
metic iterated monodromy group associated to a certain post-critically finite quadratic polynomial,
as discussed in [47].

Let Γ̂ = Ẑ2 o Ẑ×2 , where Ẑ2 is the dyadic integers, and Ẑ×2 is the multiplicative group of dyadic

integers. Denote by a the topological generator of the abelian group Ẑ2, that is, a is identified with

([1]) ∈ Ẑ2, where [1] is the equivalence class of 1 in Z/2nZ, n ≥ 1.

Recall that Ẑ×2 is the automorphism group of Ẑ2. The multiplicative units in the 2-adic integers
can be computed by computing the units in Z/2nZ for any n, and taking the inverse limit (see [54,

Theorem 4.4.7]) so we have Ẑ×2 ∼= Z/2Z× Ẑ2. Here, Z/2Z is generated by ([−1]) ∈ Ẑ×2 , where [−1]
denotes the equivalence class of −1 in Z/2nZ for n ≥ 1, and the the second factor is generated by

([5]) ∈ Ẑ×2 , where [5] is the equivalence class of 5 in Z/2nZ for n ≥ 1. Denote these generators by b
and c respectively. Then let

Γ ∼= 〈a, b, c | b2 = 1, bab−1 = a−1, cac−1 = a5, bcb−1c−1 = 1〉,(36)

where b and c commute since they are generators of different factors in a product space.

Define a self-embedding ϕ : Γ→ Γ by setting ϕ(a) = a2, ϕ(b) = b and ϕ(c) = c. That is, we have

Γ1 = ϕ(Γ) ∼= 〈a2, b, c | b2 = 1, ba2b−1 = a−2, ca2c−1 = (a2)5, bcb−1c−1 = 1〉,

and so we obtain a group chain Γ` = 〈a2`

, b, c〉, ` ≥ 1. The discriminant group of the action defined
by this group chain was computed in [47, Section 7]. In particular, computing the normal cores of

the subgroups Γ` we obtain C` = 〈a2`

, c2
`−2〉 ⊂ Γ`, and it follows that

Dϕ = lim
←−
{Γ`+1/C`+1 → Γ`/C`} ∼= Ẑ×2 .

10. Problems

The study of the properties of the dynamical systems of the form (Xϕ,Γ,Φϕ) suggests the following
approach to the classification problem for renormalizable groups and their proper self-embeddings.

PROBLEM 10.1. Classify the structure of renormalizable groups Γ which satisfy:

(1) Dϕ is the trivial group;
(2) Dϕ is a finite group;
(3) Dϕ is an infinite profinite group.

Case (1) is discussed further in Section 10.1 below. There are numerous and varied constructions of
examples of case (2), where Dϕ is a finite group. See Section 9.2 for some typical examples.

The most interesting problems arise for case (3), where Dϕ is an infinite profinite group. Corollary 4.7
implies that all of the direct limit group invariants for Cantor actions defined in [40] are bounded
for these examples. Thus, the problem is to refine the invariants constructed from the adjoint action

of Dϕ on the pro-nilpotent normal subgroup N̂ϕ ⊂ Γ̂ϕ to distinguish these various examples. Note
that if the group chain Gϕ has trivial intersection, then the intersection Dϕ ∩ Γ is trivial, so the
invariants constructed using the adjoint action of Dϕ are only “seen” when considering the action

of the profinite group Γ̂ϕ.

10.1. Renormalizable nilpotent groups. Suppose that Γ admits a renormalization ϕ : Γ → Γ,
such that each of the subgroups Γ` = ϕ`(Γ) is a normal subgroup of Γ. Then the third author
showed in the work [57] that the quotient Γ/C(Gϕ) must be free abelian. In particular, if the group
chain Gϕ = {Γ` | ` ≥ 0} has trivial intersection, then Γ is free abelian. Theorem 1.1 is a more
general form of this result, where the assumption that Gϕ has finite discriminant implies that Γ is
virtually nilpotent.



CANTOR DYNAMICS OF RENORMALIZABLE GROUPS 23

The remarks at the end of Section 9.3 show that Dϕ is trivial when p = q for the construction in
Section 9.3. In fact, these remarks apply in general to the diagonal action on the nilpotent subgroup
of upper triangular integer matrices, where ϕ is given by multiplication by a constant factor p on
the super-diagonal entries; that is, those directly above the diagonal. This suggests that the non-
triviality of the discriminant invariant Dϕ for an endomorphism of a nilpotent group is a measure
of the “asymmetry” of the embedding ϕ. It is an interesting problem to make this statement more
precise for the general nilpotent group.

PROBLEM 10.2. Let Γ be a finitely generated torsion free nilpotent group, and ϕ a renormalization
such that Gϕ = {Γ` | ` ≥ 0} has trivial intersection. Develop the relationship between the properties
of the discriminant group Dϕ, the embedding ϕ, and the nilpotent structure theory of Γ, as developed
for example in [14, 19].

10.2. Algebraic invariants. The reduced group C∗-algebra C∗r (Xϕ,Γ,Φϕ) obtained from the group
action (Xϕ,Γ,Φ) is a source of invariants for the group Γ and the embedding ϕ. In the case when
Γ = Zn is free abelian, the work [28] shows that the ordered K-theory of this C∗-algebra is a complete
invariant of the action. It is natural to ask whether similar results are possible in more generality:

PROBLEM 10.3. Let Γ be a finitely generated nilpotent group, and ϕ a renormalization of Γ.
What information about the nilpotent structure constants of Γ and the embedding ϕ is determined
by the K-theory groups K∗(C

∗
r (Xϕ,Γ,Φϕ))?

Note that by Theorem 1.8, the isomorphism class of the discriminant group Dϕ is an invariant of the
continuous orbit equivalence class of the Cantor action (Xϕ,Γ,Φϕ), and the isomorphism class of
C∗r (Xϕ,Γ,Φϕ) is also invariant. It seems natural that these two invariants should be closely related.

PROBLEM 10.4. Let Γ be a renormalizable group. How does the algebraic structure of C∗r (Xϕ,Γ,Φϕ)
reflect the properties of the profinite group Dϕ?

Theorem 5.3 shows that the profinite group Γ̂ϕ is a semi-direct product with Dϕ as a factor. One

approach to Problem 10.4 would be to relate the decomposition Γ̂ϕ ∼= N̂ϕ o Dϕ in Theorem 5.3 to
the algebraic structure of C∗r (Xϕ,Γ,Φϕ).

10.3. Realization. Given any pro-finite group D which is topologically countably generated, it was
shown in [38, 40], using the Lenstra method, that there exists a finitely generated group Γ and
Cantor action (X,Γ,Φ) whose discriminant is isomorphic to D.

PROBLEM 10.5. What profinite groups can be realized as the discriminant of a Cantor action
associated to a renormalizable group Γ?

10.4. Renormalizable Cantor actions. Let (X,Γ,Φ) be a minimal equicontinuous Cantor action

of wild type; that is, the action Φ̂ : Φ(Γ) → Homeo(X) is not locally quasi-analytic. The action is
said to be wild of finite type if, in addition, for some x ∈ X and every clopen set with x ∈ U , we that

the kernel of the restriction ker{Φ̂U : Φ(Γ)x → Homeo(U)}. Examples of wild actions constructed by
the first two authors in [38] are of finite type. However, the examples in [38] are not renormalizable.

PROBLEM 10.6. Do there exist renormalizable Cantor actions which are wild of finite type?

PROBLEM 10.7. Suppose that (X,Γ,Φ) is a renormalizable Cantor action which is wild. What
can be said about the algebraic properties of Γ? For example, must Γ have exponential growth type?
What can be said about the profinite group Φ(Γ) ⊂ Homeo(X) for such actions?

10.5. Representations of Galois groups. The works of the second author [46, 47] define the
discriminant invariants associated to arboreal representations of absolute Galois groups for number
fields and function fields. Such a representation is a profinite group, obtained as the inverse limit
of finite Galois groups, which act on finite extensions of the ground field, obtained by adjoining the
roots of the n-th iteration of the same polynomial, for n ≥ 1.
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The example given in Section 9.4 is an example of an arboreal representation of an absolute Galois
group, which is isomorphic to a Cantor action associated to a renormalization. For many polynomials
the associated action is known to be not locally quasi-analytic [47] and, therefore, by Theorem 1.2
it cannot be associated to a renormalization of a group. This suggests the following problem:

PROBLEM 10.8. For which arboreal representations of absolute Galois groups does there exists a
dense finitely generated group Γ and a renormalization ϕ : Γ→ Γ, such that the arboreal representa-
tion of Γ is return equivalent to a Cantor action associated to (Xϕ,Γ,Φϕ)?

Although, as discussed above, many arboreal representations are not associated to an finite-index
embedding ϕ : Γ → Γ, since they are associated to a structure built using iterations of the same
polynomial, it is natural to look for a formalism similar to the non-co-Hopfian setting for the study
of these groups. This motivated the definition of renormalizable actions in Section 7, and suggest
the following interesting problem:

PROBLEM 10.9. Let (X,Γ,Φ) be an equicontinuous minimal Cantor action, and suppose that
(X,Γ,Φ) is renormalizable as in Definition 7.1. Develop a structure theory for the group obtained
as the closure of the action (X,Γ,Φ) in Homeo(X), analogous to Theorem 5.3.
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343, 1998.

[52] C. Reid, Endomorphisms of profinite groups, Groups Geom. Dyn., 8:553–564, 2014.
[53] J. Renault, Cartan subalgebras in C∗-algebras, Irish Math. Soc. Bull., 61:29–63, 2008.

[54] L. Ribes and P. Zalesskii, Profinite groups, Springer-Verlag, Berlin 2000.
[55] M. Sapir, Some group theory problems, Internat. J. Algebra Comput., 17:1189–1214, 2007.
[56] M. Shub, Expanding maps, In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif.,

1968), Amer. Math. Soc., Providence, R.I., 1970, 273–276.

[57] W. van Limbeek, Towers of regular self-covers and linear endomorphisms of tori, Geom. Topol., 22:2427–2464,
2018.

[58] W. van Limbeek, Structure of normally and finitely non-co-Hopfian groups, preprint, 2017; arXiv:1710.02179.

Steven Hurder, Department of Mathematics, University of Illinois at Chicago, 322 SEO (m/c 249), 851 S.

Morgan Street, Chicago, IL 60607-7045

Email address: hurder@uic.edu

Olga Lukina, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna,

Austria

Email address: olga.lukina@univie.ac.at

Wouter Van Limbeek, Department of Mathematics, University of Illinois at Chicago, 322 SEO (m/c 249),
851 S. Morgan Street, Chicago, IL 60607-7045

Email address: wouter@uic.edu


	1. Introduction
	Acknowledgments

	2. Cantor actions
	2.1. Basic concepts
	2.2. The dynamical profinite model
	2.3. Equivalence of Cantor actions

	3. Renormalizable groups
	3.1. The geometric (tree) model
	3.2. The algebraic profinite model
	3.3. The universal profinite model

	4. Regularity of Cantor actions
	5. Open embeddings
	6. Finite discriminant
	7. Renormalizable Cantor actions
	7.1. Renormalizable actions
	7.2. Renormalizable actions on trees

	8. Continuous orbit equivalence
	8.1. Proof of Theorem 1.7
	8.2. Proof of Theorem 1.8

	9. Applications and Examples
	9.1. Infinitely generated actions
	9.2. Multihedral groups
	9.3. Nilpotent endomorphisms
	9.4. Semi-direct product of dyadic integers with its group of units

	10. Problems
	10.1. Renormalizable nilpotent groups
	10.2. Algebraic invariants
	10.3. Realization
	10.4. Renormalizable Cantor actions
	10.5. Representations of Galois groups

	References

