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ABSTRACT. We consider symmetric random walks on discrete, Zariski-dense subgroups
Γ of a semisimple Lie group G with Property (T). We prove that if Γ has infinite covolume,
then the associated hitting measure on the Furstenberg boundary of G is singular. This is
in contrast to Furstenberg’s discretization of Brownian motion to lattices, and it is the first
result of this type when G has higher rank.

1. INTRODUCTION

Let G be a semisimple Lie group with no compact factors, and fix a probability mea-
sure µ on G with countable support such that the semigroup Γ “ Γµ generated by the
support of µ is Zariski-dense. In this setting, by work of Furstenberg, Guivarc’h-Raugi and
Gol’dsheid-Margulis [7, 8, 10], the random walk with law µ converges almost surely to a
unique point on the Furstenberg boundary X “ G{P (here P is the Borel subgroup of G),
and the corresponding hitting measure (also called harmonic or Furstenberg measure) ν is
the unique µ-stationary measure on G{P .

Brownian motion on G is a continuous analogue of such a random walk, and in that
case the analogous hitting measure is of Lebesgue class on G{P . If Γ Ď G is a lattice,
Furstenberg has shown that there is a probability measure µ on Γ such that ν is in the
Lebesgue measure class [6], using the so-called discretization of Brownian motion.

Let us now consider a random walk on a Zariski-dense group Γ with law µ. Due to
ergodicity of the Furstenberg measure ν, there is a dichotomy: ν is either absolutely con-
tinuous or singular with respect to Lebesgue measure. Kaimanovich-Le Prince made the
following well-known “Singularity Conjecture”:

Conjecture 1.1 ([12]). The Furstenberg measure ν is singular whenever µ is finitely sup-
ported.

In the above generality, this conjecture is now known to admit counterexamples, with re-
sults giving absolutely continuous Furstenberg measures for random walks due to Bárány-
Pollicott-Simon [1], Bourgain [4], Benoist-Quint [2], and Lequen [17]. However, in all
of these examples, the group Γµ is most likely not discrete (in the latter two results, the
groups are proven to be dense, whereas in Bárány-Pollicott-Simon, the groups are generic
in a family and Bourgain’s groups are generated by small elements).

However, if Γ is discrete, the Singularity Conjecture seems very plausible and is older,
see [15] for a discussion for lattices. There has been much progress on this problem when
G “ SLp2,Rq, in which case the conjecture has been proven for noncocompact lattices by
Guivarc’h-Le Jan [9] (see also Blachére-Haı̈ssinsky-Mathieu [3]) and for some cocompact
lattices by Carrasco-Lessa-Paquette [5], Kosenko [14] and Kosenko-Tiozzo [16]. We refer
to these references for more information on progress in the setting of rank 1 groups.
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Here, we will start the investigation of this conjecture in higher rank, and we establish
the singularity of ν whenever Γ is not a lattice and without any assumptions on µ (other
than that it is symmetric):

Theorem 1.2. Assume that G has Property (T). Let Γ ă G be a discrete Zariski-dense
subgroup that is not a lattice. Let µ be a symmetric probability measure on Γ such that
suppµ generates Γ.

Then the Furstenberg measure ν on G{P is singular with respect to Lebesgue measure.

Remark 1.3.
(1) This result follows from a more general version that also applies to asymmetric

measures: In that case, we prove that at least one of the forward and the backward
Furstenberg measure is singular (see Theorem 3.1 for a precise statement).

(2) The only semisimple Lie groups G that do not have Property (T) are those with at
least one factor isogenous to SOpn, 1q or SUpn, 1q. In particular, all higher rank
simple Lie groups have Property (T).

Acknowledgments. While preparing this paper, we discovered that a very similar result
to Theorem 1.2 has independently been obtained by Dongryul Kim and Andrew Zimmer
using a different proof [13]. Their theorem does not require µ to be symmetric. We also
thank them for noting an error in an earlier version of this paper (see Remark 2.3). The
authors thank Sebastian Hurtado for fruitful discussions.
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for Mathematical Challenges at Korea Institute for Advanced Study, and Sanghyun Kim’s
Mid-Career Researcher Program (RS-2023-00278510) through the National Research Foun-
dation funded by the government of Korea.

2. PRELIMINARIES

We need the following measurable analog of proper actions introduced by Margulis
[18]:

Definition 2.1. Let H be a locally compact second countable group acting continuously
on a locally compact second countable space X with an H-quasi-invariant Borel measure
µ. Let mH be a left Haar measure on H . Then the following are all equivalent:

(1) For µ-almost every x P X , the orbit Hx is closed and the stabilizer StabHpxq “

th P H : hx “ xu is compact in H .
(2) For µ-almost every x P X , StabHpxq is compact and the map A{StabHpxq Ñ Hx

given by aStabHpxq ÞÑ hx is homeomorphism.
(3) For µ-almost every x P X , the orbit map H Ñ Hx given by h ÞÑ hx is proper,

that is, the set th P H : hx P Eu is bounded in H for all bounded Borel sets
E Ď X .

(4) For µ-almost every x P X and any bounded Borel subset E Ă X , the mH -
measure of th P H : hx P Eu is finite.

If the above conditions are satisfied, then we call the H-action measurably proper on
pX,µq.

Margulis discovered a representation-theoretic criterion for measurable properness of
H-actions:



FURSTENBERG MEASURE OF INFINITE COVOLUME GROUPS IN HIGHER RANK 3

Theorem 2.2 (Margulis [18]). Let X “ G{Γ and mX be a (infinite) Haar measure on X .
Assume that for every (local) factor Gi of G, there are no nonzero Gi-invariant vectors in
L2pG{Γq. Then the A-action on X by left translation is measurably proper. In particular,
the A-action on X is not ergodic.

Remark 2.3. The above result is actually a combination of several of Margulis’ results
in [18]: Theorem 2(a) states that if the G-action on G{Γ is pG,K,Aq-tempered, then the
A-action is measurably proper. Remark 1 shows that for temperedness of the action, it
suffices that A is pG,Kq-tempered, i.e. there exists some L1 function on A that bounds
the matrix coefficients of A of K-invariant vectors in any nontrivial unitary representation
of G.

Example (a) claims that A is pG,Kq-tempered, but unfortunately this is slightly mis-
taken: The proof here uses Howe-Moore estimates for the matrix coefficients of A, but
these only apply if there are no nonzero invariant vectors for any local factor of G. In the
theorem as stated above, we added this additional assumption on the representation, so the
Howe-Moore estimates hold and the action of G on G{Γ is indeed pG,K,Aq-tempered.

An earlier version of this paper did not contain the additional assumption. We thank
Dongryul Kim and Andrew Zimmer for pointing out that measurable properness does not
hold without it, e.g. if G “ G1 ˆ G2 and Γ “ Λ1 ˆ Γ2, where Λ1 Ď G1 is a lattice, then
A does not act measurably properly on G{Γ.

Finally, the following lemma is probably well-known, but we could not readily locate a
reference, so we include a proof:

Lemma 2.4. Let Γ be a countable group of Borel transformations of a Borel space M .
Suppose λ, ν are two Γ-quasi-invariant Borel measures on M such that ν is Γ-ergodic.
Then either ν is absolutely continuous with respect to λ or ν and λ are mutually singular.

Proof. Suppose that ν is not absolutely continuous: then there exists a set A with νpAq ą 0
and λpAq “ 0. Then ΓA is Γ-invariant, so by ergodicity of ν one obtains νpΓAq “ 1.
On the other hand, since λ is quasi-invariant one has λpgAq “ 0 for any g P Γ, hence
λpΓAq “ 0. Thus, ν and λ are singular. □

3. PROOF OF THE MAIN THEOREM

In this section, we retain the setting and notations of Theorem 1.2, i.e., let G be a
semisimple Lie group with no compact factors, Γ Ď G be a discrete Zariski-dense sub-
group, and µ a probability measure whose support generates Γ as a semigroup. Let µ̌ be
the reflected measure, i.e. µ̌pgq :“ µpg´1q. Let ν and ν̌ be the (unique) pΓ, µq- and pΓ, µ̌q-
stationary measures on G{P , respectively. Let mK denote the (K-invariant) Lebesgue
measure on G{P .

The Main Theorem 1.2 is the special case (for symmetric µ) of the following more
general result:

Theorem 3.1. Assume that G has Property (T). Let Γ ă G be a discrete Zariski-dense
subgroup which is not a lattice. Let µ be a probability measure on Γ such that supp µ
generates Γ as a semi-group.

Then either ν or ν̌ on G{P is singular with respect to mK .

In the remainder of this section, we prove Theorem 3.1.
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3.1. Ergodicity on G{P ˆ G{P . Let pB, δq be the Poisson boundary of pΓ, µq, and let
pB, δ̌q be the Poisson boundary of pΓ, µ̌q.

We have the following theorem on double-ergodicity.

Theorem 3.2 (Kaimanovich [11]). The diagonal Γ-action on pB ˆ B̌, δ b δ̌q is ergodic.

Now, let ν denote the unique µ-stationary measure on G{P , and let ν̌ denote the unique
µ̌-stationary measure on G{P .

Corollary 3.3. The diagonal Γ-action on pG{P ˆ G{P, ν b ν̌q is ergodic.

Proof. Since Γ is Zariski-dense, the µ-random walk converges almost surely in the Fursten-
berg compactification, and the hitting measure is supported on G{P [10]. Hence, pG{P, νq

is a pΓ, µq-boundary, that is, there is a Γ-equivariant measurable map pB, δq Ñ pG{P, νq.
Since the same is true for the µ̌-random walk, we obtain a Γ-equivariant measurable map
Φ : pBˆB, δb δ̌q Ñ pG{P ˆG{P, ν b ν̌q. Hence, any Γ-invariant subset of G{P ˆG{P
pulls back to a Γ-invariant subset of B ˆ B. □

3.2. Non-ergodicity on G{P ˆG{P . Now we prove the following non-ergodicity result:

Proposition 3.4. Assume that the A-action on G{Γ is measurably proper. Then the diago-
nal Γ-action on pG{P ˆG{P, λ1 bλ2q is not ergodic for any pair of absolutely continuous
Γ-quasi-invariant measures λ1 and λ2.

Proof. We argue by contradiction so suppose there exist absolutely continuous measures
λ1 and λ2 such that Γ ñ pG{P ˆ G{P, λ1 b λ2q is ergodic.

Write M :“ ZKpAq for the centralizer of A in K. It is well-known that with respect to
Lebesgue measure, we have G{P ˆ G{P » G{MA as G-spaces: Let Q be the opposite
parabolic to P , i.e. Q is the image of P under the Cartan involution on G. Then G{P »

G{Q and P X Q “ MA, and the orbit map G{MA Ñ G{P ˆ G{Q is the desired
isomorphism.

Therefore we can view λ1 b λ2 as a measure on G{MA. Lift λ1 b λ2 to a probability
measure rτ on G which is absolutely continuous with respect to Haar along MA-orbits and
projects to λ1 b λ2 on G{MA:

rτ :“

ż

G{MA

g˚ηMAdpλ1 b λ2qpgq

where g refers to left-translation by g and ηMA is a probability measure on MA that is
in the measure class of Haar measure (i.e. dηMA “ fdmMA where

ş

MA
fdmMA “ 1).

Note that rτ is absolutely continuous with respect to Lebesgue measure.
We claim that rτ is ergodic for the ΓˆMA-action on G, where Γ acts by left-translations

and MA acts by right-translations. Indeed, if U Ď G is an invariant set, then U{MA Ď

G{MA is Γ-invariant and therefore is null or conull with respect to λ1 b λ2. If U{MA is
null, then

rτpUq “

ż

U{MA

ηMApg´1U X MAq dpλ1 b λ2qpgq ď pλ1 b λ2qpU{MAq “ 0.

Therefore U is null with respect to rτ . By the same reasoning applied to the complement of
U , we see that if U{MA is conull with respect to λ1 b λ2, then U is conull with respect to
rτ .

Now we disintegrate rτ with respect to the projection G Ñ ΓzG. We obtain a measure τ
on ΓzG that is MA-ergodic and absolutely continuous with respect to Lebesgue measure.
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Since A acts measurably properly on G{Γ and M is compact, the MA-action on ΓzG
is also measurably proper. In [18, p. 455], Margulis writes that any ergodic measur-
ably proper action is supported on a single closed orbit. This finishes the argument since
dimpMAq ă dimpGq, so such measures cannot be absolutely continuous with respect to
Lebesgue. For completeness, we include an argument that proves Margulis’ claim:

Roughly, for any pair of points x1, x2 in disjoint MA-orbits with the property that any
we want to find small sets E1, E2 centered at points x1, x2 in disjoint MA-orbits such that
AE1 and AE2 are disjoint but each have positive mass with respect to τ . Let us now carry
out this construction.

First, let X 1 Ď Γ0zG be the full Lebesgue measure (and hence full τ -measure) locus of
points that satisfy the conditions (1) and (2) from the definition of measurable properness
of the MA-action on ΓzG. Note that X 1 is MA-invariant.

Let x1, x2 P X 1 be a pair of points that are in distinct MA-orbits and with the property
that any open neighborhood of them has positive τ -measure.

Now let Bi Q xi pi “ 1, 2q be disjoint bounded open neighborhoods of these points
such that MAx1 X B2 “ ∅ and B1 X MAx2 “ ∅. Note that it is possible to choose such
sets since the MA-orbits of x1, x2 are closed and disjoint.

Set B1
i :“ Bi X X 1. For x P B1

1, let T12pxq P r0,8s such that max R B2 for any
}a} ą T12pxq and m P M . Note that T12pxq is a.e. finite by Condition (3) of measurable
properness and boundedness of B2.

We now filter X according to the sublevel sets of T12, i.e. for N ě 0, let XN consist
of those points x P X such that max R B2 for any m P M and }a} ą N . Since tXNuN

exhaust a full measure set of X , we see that XN X B1
1 has positive τ -mass for N " 1. We

choose such N and set E1 :“ XN X B1
1.

We are nearly done, for MAE1 can only intersect B1
2 by translates of ma where }a} ď

N . To also avoid such translates, we shrink B1
2 to a smaller set E2 which still has positive

τ -mass and such that max R B1 for any m P M and a P A with }a} ď N and x P E2. We
do this as follows:

For x P B2, let R21pxq be the smallest absolute value of a time }a} such that max P B1

for some m P M and a P A. Note R21px2q “ 8 since MAx2 X B1 “ ∅.
Note that R21pxq Ñ 8 as x Ñ x2. For if there were a sequence yn Ñ x2 such

that R21pynq ď R ă 8, then along a subsequence we can assume the corresponding
mn Ñ m P M and R21pynq Ñ r, and then we must have marx2 P B1, which is a
contradiction.

Now let E2 Ď B2
2 be sufficiently small that R21 ą N on E2. Then we have that MAE1

and MAE2 are disjoint, MA-invariant, and each carry positive τ -mass. This contradicts
ergodicity of MA. □

In view of Margulis’ criterion for measurable properness given in Theorem 2.2, in order
to apply Proposition 3.4, we need to show that no local factor of G has nonzero invariant
vectors in L2pG{Γq. The following lemma shows that we can pass to a quotient of G where
this is true (compare Kim-Zimmer [13, Proposition 4.1]):

Lemma 3.5. There exists a normal subgroup (i.e. collection of local factors) G1 Ď G
such that the image Γ0 Ď G0 :“ G{G1 is discrete and Zariski-dense, and no local factor
of G0 has nonzero invariant vectors in L2pG0{Γ0q.

Proof. Consider any maximal normal subgroup G1 with a nonzero invariant vector f P

L2pG{Γq. Note that G1 ‰ G since otherwise Γ is a lattice. Lift f to a function rf on
G, which is left-invariant under G1 and right-invariant under Γ. Since G1 is normal, it is
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also right-invariant under G1 and therefore right-invariant under G1Γ, and hence invariant
under the closure G1Γ.

Let G0 “ G{G1 “ G1zG. The G1Γ-invariant function rf on G descends to a function
f0 on G0 “ G1zG that is invariant under right-translation by G1zG1Γ0. It is straight-
forward to see that the latter is Γ0 where Γ0 is the projection of Γ0 to G1zG. Since Γ is
Zariski-dense in G, so is Γ0 in G0. Therefore if Γ0 is not discrete in G0, then the connected
component of Γ0 containing the identity consists of a collection of factors of G0, which
would contradict the maximality of G1. Further, Γ0 could not be a lattice, or averaging rf
over G0{Γ0 would give a constant function that descends to a square-integrable function on
G{Γ (and hence Γ would have been a lattice). If local factors of G0 have nonzero invariant
functions in L2pG0{Γ0q, we repeat this procedure until it terminates.

□

Proof of Theorem 3.1. Since by Corollary 3.3 ν b ν̌ is ergodic, then by Lemma 2.4 either
ν b ν̌ is absolutely continuous with respect to mK b mK , or they are mutually singular.

We aim to rule out the first case: Let G1, G0 and Γ0 be as in Lemma 3.5. We write
µ0 for the push-forward of µ to Γ0. The resulting stationary measures ν0 and ν̌0 are the
pushforwards of ν and ν̌ along the map G{P Ñ G0{P0. By Proposition 3.4, ν0 b ν̌0
and mK0 b mK0 are mutually singular, which implies that either ν0 or ν̌0 is singular with
respect to mK . This shows that either ν or ν̌ is singular with respect to mK . □
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