Math 550 – Homework 10

For discussion: 4/9 at 5-6 pm in SEO 427.

Problem 1. Let $\pi : P \to M$ be a principal *G*-bundle and $\Phi : P \to P$ be a gauge transformation with associated map $\eta : P \to G$ (see HW 8 set, last problem). Let \mathcal{H} be a connection on P with connection form ω and curvature Ω . Recall from HW 9:

- $\mathcal{H}^{\Phi} := \Phi_* \mathcal{H}$ is also a connection.
- Let $\omega^{\Phi} := (\Phi^{-1})^* \omega$ is the connection form of \mathcal{H}^{Φ} .

Prove that $\Phi^*\omega = \operatorname{Ad}(\eta^{-1}) \circ \omega + \eta^*\omega_G$, where $\omega_G \in \Omega^1(G; \mathfrak{g})$ is the Maurer-Cartan form on G, namely for $v \in T_gG$, set $\omega_G(v) := L_{q^{-1}*}v \in \mathfrak{g}$, where L_g is left-translation by g.

Problem 2. (Classification of real line bundles.)

- (a) Let M be a smooth manifold. Let $L \to M$ be a (real) line bundle over M. Prove that L admits an atlas of local trivializations with cocycle valued in $\{\pm Id\} \subseteq GL(1,\mathbb{R})$. Conclude that Ladmits a flat connection.
- (b) Hence by the classification of flat bundles, we find that the set $\operatorname{Pic}(M; \mathbb{R})$ of real line bundles over M are in one-to-one correspondence with $\operatorname{Hom}(\pi_1 M, \mathbb{Z}/2\mathbb{Z}) = H^1(M, \mathbb{Z}/2\mathbb{Z})$ via monodromy.

Prove that this is a group isomorphism (where $\operatorname{Pic}(M;\mathbb{R})$ is equipped with the operations of tensor product and dualization).

Remark 1: An independent proof of (a) is that a real line bundle is trivial if and only if it is orientable. One may show that any line bundle $L \to M$ pulls back to an orientable line bundle over some double cover M_L^+ of M. And such double covers are in bijection with $\operatorname{Hom}(\pi_1 M, \mathbb{Z}/2\mathbb{Z})$.

Remark 2: The group isomorphism $\operatorname{Pic}(M; \mathbb{R}) \to H^1(M, \mathbb{Z}/2\mathbb{Z})$ is a characteristic class (with $\mathbb{Z}/2\mathbb{Z}$ -coefficients) called the first *Stiefel-Whitney class* w_1 .

Problem 3. Let $E_1 \to M$ and $E_2 \to M$ be two complex vector bundles with associated frame bundles $GL(E_1) \to M$ and $GL(E_2) \to M$. Fix connection forms ω_1 and ω_2 on $GL(E_1)$ and $GL(E_2)$.

- (a) Use ω_1 and ω_2 to define a connection form ω on $\operatorname{GL}(E_1 \otimes E_2)$ as follows: Let $n_1 = \operatorname{rk}(E_1)$ and $n_2 = \operatorname{rk}(E_2)$. Consider the principal $\operatorname{GL}(\mathbb{C}^{n_1}) \times \operatorname{GL}(\mathbb{C}^{n_2})$ -bundle $\operatorname{GL}(E_1) \times_{\Delta} \operatorname{GL}(E_2)$ over M that is the pre-image of the diagonal under $\operatorname{GL}(E_1) \times \operatorname{GL}(E_2) \to M \times M$. First define a connection here. Then use the natural representation $\operatorname{GL}(\mathbb{C}^{n_1}) \times \operatorname{GL}(\mathbb{C}^{n_2}) \to \operatorname{GL}(\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2})$.
- (b) Compute the curvature of ω in terms of the curvatures of ω_1 and ω_2 . Use this to prove

$$c_1(E_1 \otimes E_2) = n_2 c_1(E_1) + n_1 c_1(E_2).$$

Problem 4. Recall that the Chern character is $ch(E) = \sum_j e^{z_j(E)}$, where $z_j(E)$ are the Chern roots, and the right-hand side is to be understood as a power series.

(a) Let Ω be the curvature of a connection on E. Prove that $ch(E) = [tr \exp \frac{i}{2\pi}\Omega]$, where the right-hand side is to be understood as

$$[\operatorname{tr} \exp \frac{i}{2\pi}\Omega] = \sum_{0 \le k \le n} \frac{1}{k!} \left[\operatorname{tr} \left(\left(\frac{i}{2\pi}\Omega \right)^k \right) \right].$$

(b) Prove that $\operatorname{ch}(E_1 \oplus E_2) = \operatorname{ch}(E_1) + \operatorname{ch}(E_2)$ and $\operatorname{ch}(E_1 \otimes E_2) = \operatorname{ch}(E_1)\operatorname{ch}(E_2)$.

(For the latter, note that the case of line bundles follows from the previous problem (why?).)

Remark 1: The Picard group $\operatorname{Pic}(M; \mathbb{C})$ of M is the (abelian) group of complex line bundles over M, where the group multiplication is given by tensor product, and inverse is given by dual (\cong complex conjugate; why are these the same? And why is this the inverse?). The result of Part (b) in particular shows that $c_1 : \operatorname{Pic}(M; \mathbb{C}) \otimes \mathbb{R} \to H^2(M, \mathbb{R})$ is a group isomorphism. This is a complex version of Problem 2.

Remark 2: There is an interesting way to combine c_1 and w_1 , namely consider the composition

$$H^1(M; \mathbb{Z}/2\mathbb{Z}) \xrightarrow{w_1^{-1}} \operatorname{Pic}(M; \mathbb{R}) \xrightarrow{-\otimes_{\mathbb{R}} \mathbb{C}} \operatorname{Pic}(M; \mathbb{C}) \xrightarrow{c_1} H^2(M, \mathbb{Z}),$$

where the middle map is complexification. It turns out that this is the Bockstein homomorphism (for the change of coefficients $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$).

Remark 3: The fact that for line bundles c_1 is an isomorphism on the group of line bundles (see Remark (1)) admits a generalization of sorts to higher rank bundles: The result of Part (b) essentially says that the Chern character is a ring homomorphism from the ring $K^0(M)$ of stable equivalence classes of complex vector bundles over M to the ring $H^{\bullet}(M)$ of the cohomology of M. Amazingly, this is an isomorphism onto the subring $H^{\text{even}}(M)$ of cohomology with even degrees (Atiyah-Hirzebruch)! This is also true with rational coefficients.

Problem 5.

- (a) Let $E \to M$ be a complex vector bundle. Prove that $c_k(E^*) = (-1)^k c_k(E)$. *Hint:* Fix a connection form ω on GL(E). Use this to define a connection form ω^* on $GL(E^*)$, and relate the curvature of ω^* to the curvature of Ω . Then prove the result.
- (b) As an application of the relation $c_k(E^*) = (-1)^k c_k(E)$, prove that if E is the complexification of a real vector bundle over M, then all the odd Chern classes of E vanish.