Math 550 – Homework 9

For discussion: 3/19 at 5-6 pm in SEO 427.

Reminder: You should solve at least 3 of the following problems. If you can regularly attend discussion session, please do so and volunteer to present the problems you have solved. If you have a recurring conflict with the discussion session, please submit solutions of at least 3 problems.

Problem 1 (Generalized Bianchi identity). Let \mathcal{H} be a connection on a principal bundle $P \to M$ with connection form ω and curvature form Ω . Recall the Bianchi identity $d\Omega = [\Omega, \omega]$. Prove that for any $k \ge 1$, we have $d(\Omega^k) = [\Omega^k, \omega]$.

Problem 2 (Pullback connections). Let \mathcal{H} be a connection on a principal bundle $P \to N$ with connection form ω and let $f: M \to N$ a smooth map. Let $\tilde{f}: f^*P \to P$ be the canonical map. Prove that $\tilde{f}^*\omega$ is a connection on f^*P and that its curvature form is $\tilde{f}^*\Omega$.

Problem 3 (Maurer-Cartan form). Let G be a connected Lie group. Define a \mathfrak{g} -valued 1-form θ on G, called the *Maurer-Cartan form*, as follows: Write $\mathfrak{g} = T_e G$, and on $T_g G$, define θ by $L_{g^{-1}*}$, where $L_{g^{-1}}$ is left-translation by g^{-1} .

- (a) Prove that θ satisfies the Maurer-Cartan equation $d\theta + \frac{1}{2}[\theta, \theta] = 0$.
- (b) Let M be any manifold and $\operatorname{pr}_2 : M \times G \to G$ denote the projection onto the second factor. Prove that $\operatorname{pr}_2^* \theta$ defines a connection (called the *Maurer-Cartan connection*) on the trivial bundle $\pi : M \times G \to M$. What is it as a distribution? Compute its curvature.

Problem 4. Let $P \to M$ be a principal G-bundle and let $\rho : G \to GL(V)$ be a finite-dimensional representation. A V-valued k-form $\alpha \in \Omega^k(P, V)$ is called

- G-equivariant (or pseudotensorial of type ρ) if $\alpha \circ g = \rho(g)^{-1} \circ \alpha$ for all $g \in G$, and
- horizontal if $\alpha(v_1, \ldots, v_k) = 0$ whenever one of the v_i is vertical.

A form that is both G-equivariant and horizontal is called *tensorial of type* ρ . Let $\Omega_{\rho}(P, V)$ be the algebra of tensorial forms of type ρ . Prove that the exterior covariant derivative D maps $\Omega_{\rho}(P, V)$ into itself, and is an antiderivation (of degree 1).

Problem 5. Let $\pi: P \to M$ be a principal *G*-bundle and $\Phi: P \to P$ be a gauge transformation with associated map $\eta: P \to G$ (see previous HW set, last problem). Let \mathcal{H} be a connection on Pwith connection form ω and curvature Ω .

- (a) Show that $\mathcal{H}^{\Phi} := \Phi_* \mathcal{H}$ is also a connection.
- (b) Let ω^{Φ} be the connection form of \mathcal{H}^{Φ} . Prove that $\omega^{\Phi} = (\Phi^{-1})^* \omega$.

(c) Prove that $\Phi^*\omega = \operatorname{Ad}(\eta^{-1}) \circ \omega + \eta^*\omega_G$, where $\omega_G \in \Omega^1(G; \mathfrak{g})$ is the Maurer-Cartan form on G, namely for $v \in T_g G$, set $\omega_G(v) := L_{g^{-1}*}v \in \mathfrak{g}$, where L_g is left-translation by g.

Remark: Part (b) and (c) give a formula for ω^{Φ} (apply (c) to the gauge transformation Φ^{-1}).