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Summary

We consider two fields of study–random groups and cubulations– from their definitions and history

to current research. Motivated by group properties, we apply cubulation theory to a particular

model of random groups, which are random quotients of free groups. We use a wall construction

on the Cayley graph of a random group G in the square model to obtain a CAT(0) cube complex

on which G acts, then show that this action results in the virtual specialness of G; in particular we

show that random groups in the square model at density d < 1/3 are residually finite. In the style

of random groups, we then explore random quotients of free nilpotent groups with results about

distribution of rank, probability of being abelian, and a vanishing threshold.
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CHAPTER 1

Introduction

Geometric group theory arose out of combinatorial group theory as its own field of study when

mathematicians applied topological methods to understand aspects of groups. Just as the grouper is

best studied in the context of its natural habitat (the ocean), a group is best studied in the context of

its actions on topological or metric spaces. For instance, some of the first constructions of algebraic

topology are the fundamental group and the presentation complex, establishing a correspondence

between spaces and groups. The universal cover of the presentation complex is the Cayley complex,

which we focus on for a major part of this document. One very nice property that a group might

have is called residual finiteness. A group G is residually finite if for every nonidentity element x,

there is a finite quotient of G in which the image of x is nontrivial. Examples of residually finite

groups are free groups and finite groups. We apply geometric group theory techniques to show that

certain groups are residually finite.

Broadly, one may want to say that “most” finitely presented groups have some property P–intuitively,

that if we pick a finitely presented group “at random,” it almost certainly has property P . The first

and most intuitive approach is the few-relators model of random groups, where we fix a number of

generators and randomly choose N strings as relators, where N is some number. In this model,

random groups have property P asymptotically almost surely (a.a.s.) if the proportion of such

groups approaches 1 as the length of the relators tends toward infinity. The most common and

fruitful model, however, was created by Gromov as the density model of random groups, which

fixes a number of generators and bound on the number of relators of a group, with an identical

definition of having property P a.a.s. as the few-relators model. Random groups is a thriving field

of research now, and researchers have created several different models to approach such an intuitive

and appealing idea. In [27], Odrzygóźdź defines the square model of random groups, in which the

length of relators is fixed at 4 and we say random groups in the square model at density d have

property P asymptotically almost surely if the proportion of such groups approaches 1 as the number

of generators tends toward infinity. In Chapter 4 we focus on this square model of random groups.

As a different approach, we define a few-relators model of random nilpotent groups, which is defined

1



1. INTRODUCTION 2

identically to the few-relators model of random groups but taking quotients of free nilpotent groups

instead of free groups. This model is the focus of Chapter 5.

Another exciting topic in mathematics today is cubulation, from which huge contributions to geo-

metric group theory have arisen. A cube complex is formed by gluing Euclidean cubes together along

faces, and it is CAT(0) if it is simply connected and non-positively curved. A group G is cubulated

if there exists a CAT(0) cube complex X on which G acts cocompactly and properly by isometries.

Cubulated groups have several nice properties; in particular, Wise showed that such groups are

actually subgroups of right angled Artin groups (raAgs) and so inherit some of the properties of

raAgs. These are described in Chapter 3. This subgroup property implies that cubulated groups

are residually finite.

The goal of Chapter 4 is to show that random groups in the square model at density d < 1/3

are residually finite. One may want to cubulate such groups for a direct proof, but following the

construction of Ollivier and Wise [30] which cubulates random groups in the density model at d < 1/6

as Odrzygóźdź does in [27] does not result in a proper action. So instead we focus on the action and

use a workaround developed by Groves and Manning in [13] to conclude that the groups are still

virtually special. The goal of Chapter 5 is to explore a new model of random groups, with a happy

incidental result that random groups in the usual density model are almost surely perfect (equal to

their commutator subgroup).



CHAPTER 2

Random Groups

1. History and Definitions

In this section we explore different models of random groups and explain the usefulness of each

model. The motivating goal of this field is to say that “most” finitely presented groups, chosen “at

random”, will exhibit certain properties. The models make explicit definitions of “most” and “at

random.”

A first and intuitive definition of a random group is given by the few-relators model : we fix a number

of generators m, a length l, and a number r of relators. Then we choose r of the (2m)(2m − 1)l−1

possible freely reduced words of length equal to l in m generators, assigning uniform probability to

each word. We say that random groups in the few-relator models have property P with overwhelming

probability (w.o.p.) if the proportion of groups constructed in such a fashion with P approaches

1 as l tends to ∞. Note: in the literature one will see both “with overwhelming probability” and

“asymptotically almost surely,” which technically cannot be used interchangeably, as probability

theory says that w.o.p. is more likely that a.a.s., but in our document we use either as l tends to

infinity throughout and renders the point moot. Gromov briefly alludes to the few-relators model

in his 1987 paper on hyperbolic groups [11], in which he proves that w.o.p. groups in this model

are hyperbolic. This intuitive model of random groups is subsumed by the density model, which we

briefly described in the introduction and is the usual focus when studying random groups.

The main definition of random groups as random quotients of finitely generated free groups was

introduced by Gromov in [12, §9.B]. Again we fix a number of generators m, choose a length l, and

now add a density parameter d chosen such that 0 < d < 1, getting rid of the number of relators

r in the few-relators model. To construct a random group one chooses ⌊(2m − 1)dl⌋ many words

as relators from the same set as in the few-relators model. Again a random group in the density

model has property P w.o.p. if the share of such groups with P approaches 1 as l tends to ∞.

As a seminal result Gromov found that if d > 1/2, triviality or Z/2Z occurs w.o.p, and if d < 1/2,

hyperbolicity and torsion-freeness occur w.o.p.. Intuitively then, we can say that “most” finitely

presented groups are hyperbolic. An excellent and thorough survey of random groups and early

3



1. HISTORY AND DEFINITIONS 4

results in the field is available in Ollivier’s book [28], and a more recent survey of current research

in random groups is available in [1]. Also in Ollivier’s book is an explanation of why we can switch

between this “spherical” model of random groups to a “ball” model (also known as Arzhantseva-

Olshanskii’s genericity model), and choose relators of length less than or equal to l–we do not do

so in this paper, but it is a useful technique in the literature. As a historical note, Kapovich and

Schupp wrote a comparison of more early models of random groups in [18].

There are a number of limitations to the density model as it applies to our motivational goal. For

instance, since the threshold is the same for hyperbolicity/torsion-freeness and for trivializing a

group, we will never see any non-hyperbolic groups or groups with torsion appear in this model.

Since Z2 can never be a subgroup of a hyperbolic group, we will never even have two commuting

elements in a random group which are not powers of each other. Surely group theorists have some

interest in abelian groups though, so this is a natural defect of the density model. We discuss this

further in Section 3.

In order to prove a bound on Property (T) in the density model, Żuk introduced the triangular model

of random groups [40], taking advantage of the fact that Property (T) passes through quotients. We

need not worry about the full implications and definition of Property (T) in this paper, only that

it implies that any action of the group on a finite-dimensional CAT(0) cube complex X must have

a global fixed point, as proven in [23, Theorem B]. In particular, any such group action cannot be

proper. In the triangular model one fixes all relators to length 3, and lets the number of generators

tend to infinity rather than the length of the relators. By proving that random groups in this model

have Property (T) when d > 1/3 and then passing to quotients, Żuk shows that random groups in

the density model have Property (T) when d > 1/3. His original proof does not explicitly explain

how to pass between models, and Kotowski and Kotowski fill this gap in [19].

The usefulness of bounding the length of relators as shown by the triangular model inspired Odrzygóźdź

to define the square model of random groups [27, Definition 1.1]. Here all relators are fixed to length

4 and random groups have property P w.o.p. if the share of presentations with P tends to 1 as

m approaches ∞. As in the density model and triangular model, Odrzygóźdź shows that random

groups in the square model are almost surely trivial when d > 1/2 and almost surely hyperbolic when

d < 1/2, and also proves bounds with Property (T) and freeness.

1.1. Van Kampen diagrams and Isoperimetric inequalities. The main method of study-

ing random groups in any model is via their isoperimetric inequalities. To understand what these
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Figure 1. A Van Kampen diagram in Z2, where red edges are a and blue edges are b.

are, we first need to understand Van Kampen diagrams, which are visual means of understanding

relations in a group. Given a group presentation ⟨S∣R⟩, a Van Kampen diagram D for the group

presentation is a planar 2-complex such that each edge is labeled by a letter in S, and the boundary

of each 2-cell reads a freely reduced word in ⟪R⟫, the normal closure of R. If D is a topological

disk, then D is called a disk diagram. In this case, choosing a boundary vertex as a base point and

reading the boundary word along ∂D gives a trivial word in the group presentation, formed as a

product of conjugates of relators in R. See Figure 1 for an example of a Van Kampen diagram of

Z2 = ⟨a, b∣[a, b]⟩, where different generators are represented by different colored edges. Just as the

boundary of a disk diagram reads off a trivial word in the presentation, any trivial word can be

represented via a disk diagram by first writing it as a product of conjugates of elements in R. For

example, Figure 1 may represent the element r ⋅brb−1 ⋅brb−1 ⋅b2rb−2⋅, where r = [a, b], the commutator

of a and b–this can be seen by starting at the blue dot and reading each square clockwise, starting

with the leftmost square as the initial r.

Isoperimetric inequalities offer bounds on the ratio between the length of the boundary of a Van

Kampen diagram D and the number of 2-cells in D. When Gromov introduces random groups in

[12], he includes a discussion of isoperimetric inequalities. In [29], Ollivier describes a sharp bound

for the isoperimetric inequality of random groups.

THEOREM 2.1. [29, Theorem 2] For random groups in the density model at d < 1/2, for any ε > 0,

w.o.p. any Van Kampen diagram D at length l satisfies ∣∂D∣ > (1− 2d− ε)l∣D∣, where ∣∂D∣ indicates

the length of the boundary of D and ∣D∣ the number of 2-cells.

Hyperbolicity of random groups follows directly from this isoperimetric inequality, as the definition

of word-hyperbolicity for a group presentation is that any trivial element in the presentation satisfies

a linear isoperimetric inequality. A full explanation of the proof of this theorem, which is beyond

the scope of this document, is available in [28, §V].
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2. The Square Model of Random Groups

As a reminder, in the square model, a random group at density d is a quotient of the free group on

m letters Fm/⟪R⟫ such that relators in R are of length four with ⌊(2m − 1)4d⌋ such relators chosen

with uniform probability from all 2m(2m − 1)3 such reduced 4-letter words.

We say a property P occurs with overwhelming probability in the square model at density d if the

probability that a random group has P converges to 1 as m → ∞. It is important to note here

that unlike the density model, the relators do not lengthen, but the number of generators increases.

Analogous to Gromov’s result, Odrzygódźyź showed the same density threshold (1/2) for triviality

and hyperbolicity in the square model [27, Theorem 2.8, Corollary 3.8].

One advantage of this model is that the Cayley complex Γ of a random group in the square model is

a square complex. A square complex is a complex formed by gluing together Euclidean unit squares

and unit intervals isometrically along vertices and edges. The first example of a square complex is

the Euclidean plane. Square complexes are also seen as the 2-skeletons of cube complexes, which we

explore in detail in Chapter 3. Square complexes come equipped with hypergraphs, graphs formed by

connecting midpoints of opposite sides of squares in the complex with edges. More precisely, we build

a graph whose vertices correspond to the 1-cells in the square complex, and add an edge between

two vertices if there exists a 2-cell R such that the corresponding 1-cells in the square complex are

opposite each other in R. A hypergraph h of Γ is a connected component of this newly formed graph.

We say an edge e ∈ Γ is dual to a hypergraph h if h passes through e. The carrier of a hypergraph

h is the connected collection of 2-cells in Γ through which h passes. A ladder L of a hypergraph h is

a segment of the carrier of h. Note that the term “hypergraph” means something different in graph

theory; the two definitions have nothing to do with each other, but we use “hypergraph” as Ollivier

and Wise do in [30]. Hypergraphs in the square model of random groups are embedded trees w.o.p.

when d < 1/3 as proven in [27, Lemma 5.4], unlike the example in Figure 2.

2.1. Isoperimetric inequalities. When Odrzygóźdź defines the square model of random

groups in [27], he proves an analogous version of Ollivier’s isoperimetric inequality. However, he

improves this isoperimetric inequality in [26, Theorem 1.2] by extending to nonplanar diagrams.

Nonplanar diagrams can be thought of as natural extensions of Van Kampen diagrams of group

presentations ⟨S∣R⟩, so they are still 2-complexes with each edge labeled by a letter in S, and any

closed loop in the 1-skeleton reads a freely reduced word in ⟪R⟫; we remove the requirement that

the diagram be planar. Given a random group G defined by relators R with length l, we consider
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Figure 2. An example of a hypergraph (red) of a square complex. A ladder is
indicated in purple; the rest of the carrier of the hypergraph is in yellow.

2-complexes Y which have a combinatorial map from Y to the presentation complex of G which is

locally injective around edges, but not necessarily around vertices.

THEOREM 2.2. [26, Theorem 1.2] At density d, for any ε > 0 and for any 2-complex Y as described

above, almost surely

∑
e∈Y (1)

(deg(e) − 1) ≤ (d + ε)∣Y ∣`

Odrzygóźdź defines Cancel(e) = deg(e) − 1 for any edge e in Y , and Cancel(Y ) = ∑
e∈Y (1)

(deg(e) − 1),

and we use the Cancel notation throughout this paper. Intuitively, Cancel tells us how many times

each edge is “double counted” when we consider ` ⋅ ∣Y ∣. For instance, any external edge adds 0 to

Cancel, and internal edges contribute how many 2-cells are glued to that edge, less one. In the

square model we let ` = 4 and use this isoperimetric inequality. If Y is planar, then Cancel(e) = 1

for internal edges and Cancel(e) = 0 for boundary edges, so the nonplanar isoperimetric inequality

simplifies to 1/2(4∣D∣− ∣∂D∣) ≤ (d+ ε)4∣D∣, or ∣∂D∣ > (1− 2d− 2ε)4∣D∣, which is the same as Theorem

2.1 up to a change in choice of ε.

In Chapter 4 we extensively make use of Theorem 2.2 with d = 1/3.

3. Random Nilpotent Groups

As mentioned in Section 1, our definition of the density model of random groups completely neglects

certain subclasses of groups, such as abelian groups. If one wants to study random abelian groups,

one can replace the free group Fm that we quotient by a free abelian group Zm, and treat the random

strings that form R as elements of Zm instead. This is one model of random abelian groups, and

there are many other ways to study them. Random abelian groups form a fairly well-studied area
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and results in it are beyond the scope of this thesis; for a useful survey of the literature, see [22]

and its references.

One area that has not been studied before the paper from which Chapter 5 is derived, however, is ran-

dom nilpotent groups, which are a natural extension of random abelian groups. Here we begin with

a free nilpotent group Ns,m of step s and rank m and add random relators as we do in other models.

Rank m means that there are m generators, and step s means that all nested commutators of depth

s are trivial: [[⋯[a0, a1], a2], . . . , as] = 1 for all elements ai in the group, but not all nested commu-

tators of depth s−1 are trivial. For example, abelian groups are 1−step nilpotent, so some results in

random nilpotent groups can be applied to random abelian groups. As is common in nilpotent group

literature, we write [a0, a1, a2] = [[a0, a1], a2] for nested commutators. So we have an explicit pre-

sentation for Ns,m = Fm/⟪{[ai0 , . . . , ais]} ∶ 1 ≤ i0, . . . , is ≤ m}⟫ = ⟨a1 . . . , am∣[ai0 , . . . , ais] for all ij⟩,

where ⟪R⟫ indicates the normal closure of R in the ambient group.

Just as all finitely-generated groups are quotients of (finite-rank) free groups, all finitely-generated

nilpotent groups are quotients of free nilpotent groups.

In Chapter 5 we begin to study the typical properties of random nilpotent groups. For instance,

one would expect that the threshold for trivialization occurs with far fewer relators than for free

groups, and also that nontrivial abelian quotients should occur with positive probability at some

range of relator growth. In fact, rather than base the random nilpotent group model on the density

model, we base it on the few-relators model because one of our results is that random nilpotent

groups are a.a.s trivial whenever ∣R∣ is unbounded as a function of l. Thus throughout Chapter 5,

we explicitly define ∣R∣, often as a function of m, the number of generators. Recall that Gromov’s

triviality threshold in the random density model implies that groups at d > 1/2 are either trivial

or Z/2Z due to a small parity issue. In Chapter 5, we choose our relators from those of length `

and ` − 1 with equal probability in order to avoid the parity issue; with this convention, a random

nilpotent group is trivial a.a.s. for d > 1/2.

Since the paper that Chapter 5 comes from has been published, a number of further studies have been

made in this model, and more models have been developed. For instance, one of our results involves

whether a random nilpotent group is abelian, based on if ∣R∣ is larger than, equal to, or smaller

than m. In [9], Garreta, Miasnikov, and Ovchinnikov expand on this result by further determining

the structure of random nilpotent groups if ∣R∣ ≤ m − 2, ∣R∣ = m − 1, ∣R∣ = m, and ∣R∣ ≥ m + 1. From

this they extend to the decidability of Diophantine problems over random nilpotent groups, which

is a discussion beyond this document. They continue their research by introducing new models
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of random nilpotent groups in [10], where they take advantage of the fact that finitely generated

nilpotent groups are polycyclic. They develop a polycyclic model of random nilpotent groups,where

presentations are written polycyclically; that is, every relator is a conjugate of an element in the

form xrii ∏
n
k=i+1 a

mi,k
k , where the ai are generators and xi is a group element. We go through this

in Section 5.1.1 when defining a Mal’cev basis, which these authors use extensively. Interestingly

these authors restrict to 2-step random nilpotent groups, and explain that any higher step random

nilpotent groups end up a.a.s. finite under their model.

Simultaneously developed alongside the paper from which Chapter 5 is derived, Delp, Dymarz, and

Schaffer-Cohen explored yet another model of random nilpotent groups, viewing torsion-free random

nilpotent groups as subgroups of Un(Z), the group of upper triangular matrices with integral entries

and unit diagonal entries [5]. Rather than take random quotients, they randomly generate torsion

free nilpotent groups with two generators of length l, and their results are based on how l increases

as a function of n.

For more on random groups and the current state of research in the field, see the recent survey

by Bassino, Nicaud, and Weil [1]. The survey extends beyond just random nilpotent groups and

is meant to encompass all current research in random groups and random subgroups; Section 2.5

summarizes the results in random nilpotent groups mentioned above.



CHAPTER 3

Cubulation

1. History and Definitions

To understand free groups, Stallings developed the idea of folding graphs and adding edges to them

without changing fundamental group, and analyzing the results in a seminal and beautiful paper [35].

He defines a canonical way to add edges to the graphs to prove Marshall Hall’s theorem. Analogously,

Wise developed a canonical completion of special cube complexes to understand subgroups of right

angled Artin groups.

Right angled Artin groups (raAgs) are a particularly nice type of groups. Given a finite simplicial

graph Γ, one forms AΓ by assigning a generator vi to each vertex of V (Γ), and a commutator relator

[v1, v2] for each edge (v1, v2) ∈ E(Γ). For example, the empty graph with n vertices creates Fn,

the free group on n generators. On the other hand, the complete graph Kn creates Zn. For a

more thorough and enjoyable introduction to right angled Artin groups, see Charney’s survey paper

[3]. RaAgs are linear and hence residually finite, which is explained in two different ways in [3]

(one method shows that Artin groups are subgroups of Coxeter groups). Linearity is inherited by

subgroups, so if one can show that a group is a subgroup of a raAg, one can show that such a group

is residually finite. We do this via the machinery of cube complexes. For now we set aside raAgs

and will return to them in Section 3.3.

A cube complex is a complex formed by gluing Euclidean unit cubes together isometrically along

cells of the same dimension. One could glue two squares together along all four of their edges to form

a sphere, but we do not want any such positive curvature. A cube complex is called CAT(0) if it is

non-positively curved and simply connected. Gromov showed that one can determine non-positive

curvature using a local condition, called Gromov’s link condition. For any vertex in a cube complex,

the link of that vertex is the complex which arises as the intersection of the cube complex with a

sphere of radius 1/3 centered at the vertex. The link condition says that if every link is simplicial,

and if every k−skeleton of a simplex is filled by a k−simplex in the link of every vertex in the cube

complex, then the entire complex is non-positively curved. Intuitively this condition implies a “no

10
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empty triangles” rule for each link, which means if three 2-cells can form a corner of a 3-cube in the

cube complex, then that 3-cube also exists. Otherwise, we would have a point of positive curvature.

We use cube complexes because they come equipped with hyperplanes, which we can build using

midcubes. For any 1-simplex [0,1] in the cube complex, one marks the midpoint 1/2 in the interval. If

the maximal dimension of cubes which contain the interval is 1, then the midcube is just the midpoint

of the interval. If it is contained in a square, the midcube is a 1-simplex connecting midpoints on

opposite sides of the square. Note any square contains two midcubes, and any d−dimensional cube

contains d midcubes. One continues this process to find midcubes of every cube. If any midcubes

share lower dimensional subcubes, then we connect them along these lower dimensional subcubes to

form the hyperplanes. Note that in a square complex, hyperplanes are exactly the hypergraphs we

defined in Section 2.2. Examples of hyperplanes are in Figure 3.

Figure 3. A non-CAT (0) cube complex with its hyperplanes

Hyperplanes of CAT (0) cube complexes have a number of nice properties: hyperplanes are them-

selves CAT (0) cube complexes, and they are two-sided (so if ĥ is a hyperplane, then X −N(ĥ) has

two components). Here, N(ĥ) is the cubical neighborhood of ĥ, and is called the carrier of ĥ–as X

is CAT (0), N(ĥ) ≅ ĥ × [−1,1]. These properties are proven by Sageev in [34].

A group G is cubulated if G acts on a CAT(0) cube complex properly and cocompactly by cubical

isometries. Warning: these properties are not consistent in the literature. In this paper we require

our action to be proper, cocompact, and by (cubical) isometries, but in the literature this is some-

times referred to as cocompactly cubulated [for instance, in [17]]. By “cubical” we mean that n-cubes

are sent to n-cubes and containment of cubes is preserved. RaAgs are cubulated, as each raAg de-

fines a canonical Salvetti complex on which it acts, which is a cube complex with a CAT(0) universal
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cover. Briefly, one builds the Salvetti complex of a raAg by starting with one vertex, adding an edge

for each generator of the raAg in the presentation which comes from the corresponding graph Γ, and

adding n-tori for each n-cycle in Γ. Note that the fundamental group of a raAg’s Salvetti complex

is the raAg itself; the 2-skeleton of the Salvetti complex is the usual presentation 2-complex of the

raAg. A major goal in current geometric group theory research is to cubulate groups.

2. Sageev’s Wall Construction

In this section we carefully go through an example of Sageev’s wall construction. In his thesis [34],

Sageev described a way to construct a CAT(0) cube complex X out of a space with walls. A space

W with walls is a set with a partially ordered set of subsets (called halfspaces) which is closed

under complementation, so for any halfspace A ⊂ W , AC ⊂ W is also a halfspace, and if A ⊂ B,

then AC ⊃ BC , such that any pair of points in W are separated by at most finitely many pairs of

halfspaces and their complements (walls). Inclusion is the partial order, so if A ⊂ B we have A < B.

Given a locally finite space with walls W , we want to form the vertices of X using ultrafilters. An

ultrafilter is a choice of a halfspace for each wall in W (so we pick either A or AC for every halfspace

in W ) such that if we choose A and A < B, we also choose B: this is called the consistency condition.

To form the vertices of X, we choose every ultrafilter which satisfies a descending chain condition

(so every descending chain A1 > A2 > . . . terminates). Then we build an edge between two vertices

if the corresponding ultrafilters differ in choice of exactly one halfspace. Note a square arises if we

have four ultrafilters which agree in all but two halfspaces A and B, and they choose all four possible

combinations of A,AC ,B,BC . If such a square occurs in X, we fill it in with a 2-cell. In general, if

an n − 1-skeleton of an n−cube appears in X, we fill it with an n cube. The resulting cube complex

is CAT(0) by construction.

EXAMPLE 3.1. Consider the Cayley complex of Z2 arising from the presentation ⟨a, b, c ∣ [a, b], ca−1b−1⟩

as our space with walls, where the bi-infinite geodesics formed by powers of generators are the walls

(so, every vertical, horizontal, and diagonal line is a wall). We show that the CAT(0) cube complex

from this presentation is R3 equipped with the Cayley complex of Z3 = ⟨a, b, c ∣ [a, b], [b, c], [a, c]⟩ as

its 2-skeleton.

Proof. For every triangular shaped region T in the Cayley complex, we can choose all halfs-

paces that contain it to form an ultrafilter that satisfies the descending chain condition. Note this
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is indeed an ultrafilter, for if T ⊂ A and A < B, we know T ⊂ B as well so we also choose B. Sageev

defines ultrafilters that arise like this principal ultrafilters.

We can also form ultrafilters “at infinity” by picking an infinite geodesic ray from the origin and

choosing halfspaces which contain infinitely much of the ray. Note these ultrafilters do not satisfy

the descending chain condition, so we do not use them when constructing the cube complex.

Have we found all the ultrafilters? Any ultrafilter which does not satisfy the descending chain

condition must be “at infinity” in some direction. Consider a vertex in the Cayley graph defined

by three walls which pairwise intersect. Since each intersects the others, these three walls form

incomparable halfspaces in the poset. We can cross any of them to find a different ultrafilter. In

particular we have 23 ultrafilters involving these three walls, but only six principal ultrafilters which

do so. We call the remaining two ultrafilters nonprincipal ultrafilters.

Consider one of the walls parallel to the diagonal wall. Since the halfspaces defined by this wall are

incomparable in the poset to the four horizontal/vertical halfspaces, each halfspace of this diagonal

wall can be chosen along with the four choices of horizontal/vertical halfspaces, and we choose

halfspaces of all other walls to be consistent with this choice. Infinitely many of these choices result

in principal ultrafilters, and infinitely many result in nonprincipal ultrafilters. So we have many

nonprincipal ultrafilters.

Now let us find the CAT(0) cube complex formed by this space with walls. Every vertex is defined

by just six halfspaces: three pairs of halfspaces formed by parallel walls which point “toward” each

other. All other choices of halfspaces are determined by these six and the consistency condition.

Switching over any one of the six walls leads to another vertex which still satisfies the consistency

condition, so every vertex has six neighbors. Choosing any two generators (say, a and b) and moving

along parallel walls, we form a copy of the Cayley graph of Z2 containing our vertex, where each

vertex in this copy of Z2 has the same orientations in the c direction as our vertex. Swapping a

single c orientation, we can do the same construction and form a parallel copy of the Cayley graph

of Z2. We can do this infinitely many times, and so end up with a copy of the Cayley graph of Z3.

Filling in the cubes gives the CAT(0) cube complex of R3 with its 2-skeleton formed by the Cayley

complex of Z3.

�

Recall that a group is cubulated if it acts on a CAT(0) cube complex with certain properties. If a

group G acts on a space with walls with no g sending a halfspace to its complementary halfspace,
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T

T

Figure 4. Left, the Cayley graph of Z2, and right, part of the ensuing CAT (0)
cube complex. Green marks principal vertices and corresponding regions; olive
marks nonprincipal vertices.

then this naturally creates an action on the 0-skeleton of Sageev’s CAT(0) cube complex as proven

by Sageev in [34, §3]. As any n−cube in the cube complex is determined by its vertices and the

action is by isometries, the action extends to each n−skeleton and so to the entire cube complex.

Thus Sageev’s construction gives an approach to cubulating groups.

For instance, Wise proves that small cancellation groups are cubulated in [37] by forming walls

within the Cayley complexes of the small cancellation groups. In particular, he forms hypergraphs

by connecting midpoints of edges of opposite sides of even-length relator polygons and gluing together

edges that arise and share such midpoints (along with a small fix for odd-length relator polygons).

From these hypergraphs he uses Sageev’s construction to form a CAT(0) complex on which the small

cancellation group acts. This approach is the basis of what we do in Chapter 4. Similarly, Ollivier

and Wise cubulate random groups at density d < 1/6 using these same techniques in [30].

3. Special Cube Complexes

This section very briefly summarizes relevant results from the sprawling and active field of special

cube complexes; for a more detailed survey with many examples see Wise’s book [38]. Wise de-

scribed a category of cube complexes, called special cube complexes, with a list of conditions on

the hyperplanes of those cube complexes. Hyperplanes cannot self-intersect, must be two-sided (so

there are no Möbius bands inside the cube complex), cannot directly self-osculate, and cannot inter-

osculate. Two hyperplanes h and l osculate if there exists a vertex v adjacent to two edges e1, e2

which do not border a square and which are dual to h and l, respectively. If h = l and we give h an

orientation, h directly self-osculates if e1 and e2 cross h with opposite orientations (v is the terminus

of both). If h ≠ l and they osculate and intersect, we say h and l inter-osculate. We illustrate these

forbidden configurations in Figure 5. For more on this, see Haglund and Wise’s paper [14].
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Figure 5. The four forbidden configurations for specialness. Fifth is indirect self-
osculation and is allowed.

EXAMPLE 3.2. Examples of special cube complexes.

● Sageev proves all CAT (0) cube complexes satisfy each condition for specialness in his

thesis, though without the language of “special” [34].

● The Salvetti complex described earlier which arises from a raAg is special.

● Graphs are special, as their hypergraphs are just midpoints of edges.

● Any subcomplex of a product of graphs is also special. Any hypergraph in a product of

graphs (which is a square complex) is a copy of one of the original graphs, and so does

not self-intersect. The product structure guarantees that hypergraphs are 2-sided, as the

carrier of any hypergraph is just a copy of one of the original graphs crossed with an

interval. Any two intersecting hypergraphs are copies of the original graphs and diverge

after meeting, so there is no interosculation. By this same reasoning there is no direct

self-osculation.

A group is special if it is the fundamental group of a special cube complex. Immediately, raAgs are

special. The major breakthrough by Haglund and Wise in [14, Theorem 4.2] is that special groups

are subgroups of raAgs, and so inherit many nice properties of raAgs. In particular, special groups

are residually finite. So we want to show that our groups of interest are special, or at least virtually

special (that is, has a finite index subgroup which is itself special).

If we find a CAT (0) cube complex X on which a group G acts properly and cocompactly by cubical

isometries such that the quotient is special, then G is special. However, even if one has made a

CAT (0) cube complex on which a group G acts, it can be difficult to show that the action is proper

and cocompact. Instead of requiring properness, a result by Groves and Manning gives us what we

need. A subgroup H < G is quasiconvex if there exists a K such that every geodesic in the Cayley

graph of G with endpoints lying in H lies within a K−neighborhood of H, and is convex if K = 0.

A trivial example of a non-convex but quasiconvex subgroup is 2Z in Z.
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THEOREM 3.3. [13, Theorem D] If G is a hyperbolic group acts cocompactly on a CAT (0) cube

complex with virtually special and quasiconvex cell stabilizers, then G is virtually special.

A corollary of this theorem states that to show that G is virtually special, we need only prove

vertex stabilizers are virtually special if the CAT (0) cube complex in question arises via Sageev’s

construction using a collection of quasiconvex codimension 1 subgroups as the walls.

There is a major theorem by Haglund and Wise which is unrelated to this document but very worthy

of mention. The theorem [14, Theorem 1.3] states that quasiconvex subgroups of hyperbolic virtually

special groups are separable: for every element x not in the subgroup, there is a homomorphism f to

a finite group such that f(x) /∈ f(H). And in fact, Haglund and Wise prove the converse as well: if

all quasiconvex subgroups of a hyperbolic group are separable, then that group is virtually special.

A group is residually finite if the trivial subgroup is separable.



CHAPTER 4

Cubulating Random Groups in the Square Model

1. Introduction

One advantage of the square model of random groups, as introduced in Chapter 2, is that the Cayley

complex Γ of a random group in the square model is a square complex. Square complexes comes

equipped with hypergraphs, graphs formed by connecting midpoints of opposite sides of squares

in the complex with edges, as explained in Chapter 3. Note that the term “hypergraph” means

something different in graph theory; the two definitions have nothing to do with each other. Lemma

5.4 in [27] states that these hypergraphs are embedded trees w.o.p. when d < 1/3.

The embeddedness of the hypergraphs suggests using the tools of special cube complex theory to

explore random groups in the square model. There is some ambiguity in the literature between the

terms “cubulated”, “cocompactly cubulated”, and “partially cubulated”; in this thesis we say a group

G is cubulated if there exists a CAT(0) cube complex X on which G acts freely and cocompactly

by isometries. Sageev’s wall construction as explained in Section 3.2 offers a way to build a dual

cube complex X on which a group G acts using codimension one subgroups; Haglund applied this

construction to Cayley complexes of small cancellation groups in [39]. Throughout the chapter, we

use Γ to denote the Cayley complex of our random group G, and X to denote the dual CAT(0) cube

complex.

Some vertices of X(0) correspond to non-empty regions in the Cayley complex Γ: we call those

principal vertices, in the same vein as our principal ultrafilters from Section 3.2. If a vertex is not

principal, it is called nonprincipal. We use different techniques to address the stabilizers of each

type. To cubulate groups, one shows that all of these stabilizers are trivial, as in [30] or [39] for

instance. However, in the square model at d > 1/4 we do not have trivial stabilizers, so we must use

different techniques to show:

THEOREM 4.1. In the square model at d < 1/3, random groups act cocompactly on a CAT(0) cube

complex with finitely generated free vertex stabilizers.

By recent work of Groves-Manning [13], we immediately get the corollary:

17
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COROLLARY 4.1. In the square model at d < 1/3, random groups are virtually special and, in

particular, are residually finite.

Proof. This follows immediately from Corollary D in [13], as finitely generated free groups are

virtually special. �

While this manuscript was being prepared, Odrzygódźyź proved that random groups in the square

model at d < 3/10 are virtually special [25] by modifying Sageev’s wall construction and showing

that the resulting action is proper. However, he uses completely different techniques from the ones

used here.

2. Background

First, we remind ourselves of some important inequalities from Section 3.2, by Ollivier and Odrzygóźdź,

respectively:

Theorem 2.1. [29, Theorem 2] At density d, for any ε > 0 the following property occurs with

overwhelming probability: every reduced Van Kampen diagram ∆ satisfies

∣∂∆∣ ≥ (1 − 2d − ε)`∣∆∣

.

Theorem 2.2. [26, Theorem 1.2] At density d, for any ε > 0 and for any 2-complex Y , almost

surely

∑
e∈Y (1)

(deg(e) − 1) ≤ (d + ε)∣Y ∣`

We choose ε < 1/3 − d and end up with an inequality we refer to throughout this chapter:

(∗) Cancel(Y )/∣Y ∣ < 4/3

As with planar isoperimetric inequalities, ∗ bounds the ratio of internal gluing to the boundary of

the diagram, which can be seen by considering ∣Y ∣ = ∣E(Y )∣
4

, where we count the number of edges

of Y . That is, the inequality says that less than a third of edges in Y are “double counted”. In

the planar case with Ollivier’s inequality, we have ∣∂∆∣ > 4/3∣∆∣, since 1/3 − d < 2(1/3 − d). Hence,

as Ollivier and Wise do, we usually use the strict inequality. We say that a diagram is valid if all

of its subdiagrams satisfies these inequalities. We make an observation about Cancel which follows

directly from the definition:
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REMARK 4.2. If A,B are 2-complexes, then Cancel(A∪B) = Cancel(A)+Cancel(B)−Cancel(A∩

B).

The following lemma is part of the proof of Theorem 5.14 in [27]. We include it because we refer to

the diagrams in Figure 6 throughout the paper as diagrams (a), (b), and (c). This is identical to

Figure 4 in [27].

LEMMA 4.3. In the square model at d < 1/3, any valid diagram containing two hypergraphs which

intersect twice must contain one of the three diagrams in Figure 6.

Figure 6. Diagrams (a), (b), and (c)

Figure 6 arises in [27, Theorem 5.14] as an application of [30, Theorem 3.12]. A key point is that

hypergraphs in the square model are embedded trees w.o.p. when d < 1/3 [27].

A diagram ∆ is collared by two hypergraphs if it is a disk diagram where every boundary cell of

∆ contains one of the hypergraphs, neither hypergraph intersects an internal cell of ∆, and there

exist two corner cells, which are boundary cells that contain intersections of the two hypergraphs.

Theorem 3.12 in [30] states if two hypergraphs which are embedded trees intersect more than once,

they form a reduced diagram collared by the two hypergraphs, and we can choose one of the corners

to be one of our intersection points. This theorem allows us to choose just one of the corner cells,

and we extend this in Lemma 4.4 to say we can in fact choose both.

Figure 7. A diagram collared by two hypergraphs, one collared by a hypergraph
and a path, and one quasi-collared by two hypergraphs, with corners indicated.

We also define diagrams collared by hypergraphs and paths as Ollivier and Wise do [30, Definition

3.11]. First, the carrier of a hypergraph h is the connected collection of 2-cells through which h
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passes. A ladder L of a hypergraph h is a segment of the carrier of h. We say a disc diagram ∆ is

collared by a hypergraph h and a path p if the following conditions hold on a ladder L of h:

● There is a path l along L joining a point in the boundary of the first 2-cell of L with a

point in the boundary of the last 2-cell of L such that ∂∆ = l ∪ p, so that l does not cross

h.

● The carrier of h contains no internal 2-cells of ∆.

An example of a diagram collared by a hypergraph and a path is in the middle of Figure 7. A

diagram Y is quasi-collared by two hypergraphs h and l if it is constructed in the following way.

Ladders Lh and Ll of h and l intersect in two corner cells, and there exist paths ph and pl through

the respective ladders which connect to a point in each of the corner cells. Then ph ∪ pl forms a

cycle, and there exists a disk A with boundary ph ∪ pl. As in the rightmost diagram in Figure 7, ∆

is quasi-collared by h and l if it is equal to A glued to Lh ∪ Ll along ph ∪ pl. Note if ph ∪ pl never

crosses either ladder, Y is actually collared by h and l and Y is a disc diagram. Otherwise Y is not

a topological disc, as one can see in Figure 7.

LEMMA 4.4. Suppose h and l are two hypergraphs in a Cayley complex Γ which are embedded trees

that intersect twice at points a and b. If h does not intersect l between points a and b and vice-versa,

then h and l form a reduced diagram ∆ collared by segments of h and l, and moreover the corners

of this diagram include points a and b.

Proof. By Lemma 3.13 in [30], there exists a quasi-collared diagram ∆ with a and b in its

corners. By construction, within the diagram h and l intersect only in the corners of ∆. Since they

are embedded trees, h and l cannot intersect themselves. So neither h nor l can appear inside an

internal cell of ∆, so ∆ is collared. By Lemma 3.15 in [30], reductions do not change the corners of

∆, so ∆ remains collared after reduction. �

3. The Cayley Complex

The following lemma is used throughout the paper to say we cannot glue two of the allowable

two-collared diagrams of Figure 6 together to form a larger diagram. We mention a few useful facts.

REMARK 4.5. If the number of edges glued to the original diagram remains the same, the ratio

Cancel(∆)
∣∆∣ is independent of how we glue additional 2-cells to ∆; that is, to which edges we choose to

glue the 2-cells or which edges of the 2-cells we choose to glue.
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If a diagram ∆ fails (∗), then gluing two adjacent 2-cells to two edges of ∆ results in a diagram that

also fails the inequality, for the addition adds 2 to ∣∆∣ and 2 to Cancel(∆).

LEMMA 4.6. There is no valid diagram Y which contains two distinct copies of diagram (c) from

Figure 6 that share at least one 2-cell.

Proof. Suppose we have one copy of diagram (c) with hypergraphs h and l intersecting twice

and a third hypergraph k, and we want to glue on a second copy to form a complex Y . Note

Cancel(c) = 5 and ∣c∣ = 4. For all of the following cases refer to Figure 8.

(1) Suppose the two copies of (c) share one 2-cell, so Cancel of the overlap is 0 as there are no

internal edges. By Remark 4.2, Cancel(Y ) = 5+ 5− 0, and ∣Y ∣ = 7 as we share one two cell.

This fails (∗).

(2) Suppose the two copies share two 2-cells. If the 2-cells are adjacent, then Cancel of the

overlap is 1, and Cancel(Y ) = 5+ 5− 1 = 9, while ∣Y ∣ = 4+ 4− 2 = 6, failing the inequality. If

the 2-cells are not adjacent, there is only one pair of possible 2-cells in both copies to glue

together: the ones that include the two intersections of h and l. Such a gluing forms two

loops in Y : one h loop and one l loop. As h and l are embedded trees, such loops cannot

exist, so this cannot occur.

(3) Finally suppose the two copies share three 2-cells. If the excluded 2-cell is one of the middle

cells, then Cancel of the overlap is 2 so Cancel(Y ) = 8 while ∣Y ∣ = 5. If the excluded 2-cell

is an outside cell, then Cancel of the overlap is 3 so Cancel(Y ) = 5+ 5− 3 = 7 while ∣Y ∣ = 5.

Both fail the inequality.

Figure 8. Top: sharing one dark gray cell, as in case (1). Bottom left: sharing
two 2-cells as in case (2). Bottom right: Sharing three 2-cells, as in case (3).

�
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LEMMA 4.7. There is no valid planar diagram which glues a copy ∆ of diagram (b) from Figure 6

to another diagram ∆′ from Figure 6 along a vertex or an edge, such that the long hypergraph from

∆ continues in ∆′.

Figure 9. Left two: Case 1 in Lemma 4.7. Right: Cases 2 and 3. The red
hypergraph is h.

Proof. As in Remark 4.5, without loss of generality we select a particular edge in ∆, our copy

of diagram (b), along which to glue the second diagram ∆′. As in Figure 9, this forms a diagram

we call Y . Let h denote the long hypergraph from ∆.

(1) If ∆′ is a diagram (a) and shares an edge with ∆, then Cancel of the overlap is −1 and

we have Cancel(Y ) = 8 and ∣Y ∣ = 6, failing the inequality. If ∆′ shares a vertex with ∆,

the vertex must be on one of the boundary edges dual to h. In order for h to be dual to

two edges which share a vertex in our diagram, it must pass through at least two 2-cells

between these edges, forming a diagram (a). A diagram with two (a)s and a (b) sharing

only edges has Cancel(Y ) = 11 and ∣Y ∣ = 8, which is not valid. Alternatively, h may pass

through four 2-cells between ∆ and ∆′ and form a copy of diagram (b), which also fails

the isoperimetric inequality.

(2) If ∆′ is a diagram (b) and shares an edge with D, the overlap contributes 1 to Cancel and

so Cancel(Y )/∣Y ∣ = 11/8, which is not valid. Then assume they share exactly one vertex.

As above h must form a diagram (a) or (b) between ∆ and ∆′, and as above this fails the

isoperimetric inequality.

(3) If ∆′ is a diagram (c) and shares an edge with ∆, we have the same failure as in the previous

case. If it shares a vertex then as in previous cases we fail the isoperimetric inequality.

�

4. The Cube Complex

We build a cube complex X from a set of hypergraphs of the Cayley complex Γ as we did in Example

3.1 in Chapter 3. Hypergraphs are 2-sided by Theorem 4.5 in [27], so we can pick an orientation
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for each hypergraph in the complex- that is, if h is a hypergraph, Γ∖h has two components and we

can choose one of these halfspaces to call h+. Each vertex in X(0) is a choice of orientation for every

hypergraph in Γ subject to the ultrafilter condition and the descending chain condition as described

in Section 3.2.

Note that each vertex in Γ defines a principal vertex in X: one chooses all the halfspaces that contain

that vertex. Multiple vertices in Γ may correspond to the same principal vertex in X. Vertices in

X which do not correspond to a region in Γ are called nonprincipal vertices. If v is a vertex in Γ,

we let xv denote the principal vertex in X that corresponds to it. We say n-cells in X or Γ are

adjacent if they share a common (n − 1) cell. We use the hypergraphs in the Cayley complex Γ as

walls in Sageev’s language. Figure 10 give an example of how a 3-cube appears in X as a result of

a hypergraph arrangement in Γ.

1 2 3

4 5 6

7
1

23

6 5

47

Figure 10. A portion of Γ and the corresponding 3-cube in X. Gray dot is the
nonprincipal vertex. Edges in X correspond to the hypergraph with changing ori-
entation.

LEMMA 4.8. (3-cubes) Any 3-cube in X arises from one of the three diagrams in Figure 12 ap-

pearing in Γ.

Proof. A 3-cube C in X arises from three pairwise intersecting hypergraphs in Γ. These may

form seven regions in Γ instead of the eight corners of the 3-cube. See Figure 10. They may also

form eight regions, as in diagram (c) of Figure 4.3, but we focus on minimal diagrams which contain

the three pairwise intersections.

Let us find all valid diagrams which minimally contain three pairwise intersecting hypergraphs. Such

diagrams consist of three corners, ladders of the three hypergraphs, and any internal 2-cells contained

in the disk formed by the three-hypergraphs. Let ∆ indicate such a diagram. The boundaries of

ladders of the three hypergraphs form ∂∆, for if any boundary cell is not from a ladder, then ∆ is

not minimal. To satisfy Theorem 2.1, we must have 4
3
≤ 6+E

3+E+I , where E is the number of added

boundary 2-cells and I is the number of added internal 2-cells, which implies E + 4I ≤ 6. Thus we
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need I ≤ 1. If I = 1, E = 0. This leads to exactly one possible disk diagram, which contains the first

diagram in Figure 12 as a subdiagram, hence is not minimal. See Figure 11.

Figure 11. The only diagram with one internal cell and three corners

Figure 12. Top: (d), (e), and (f) are disk diagrams that lead to three cubes,
below. Black dots mark the identity. Nonprincipal vertices are marked in gray.

So I = 0, and it follows that at least two of the corners are adjacent. With no internal cells, this

constraint leads immediately to the three allowable diagrams which lead to 3-cubes: Figure 12.

Note that diagram (d) can be seen as the corner of a cube, and hence is actually symmetric. Note

also that with the presence of other hypergraphs, the (e) and (f) 3-cube pictures actually create

two or three adjacent 3-cubes in the cube complex, and hence more than one nonprincipal vertex in

some 3-cubes. Finally, we see that diagram (d) is a subdiagram of diagram (c) from Figure 6. All

eight corners of the cube are principal in diagram (c). �

COROLLARY 4.9. Any 3-cube in the cube complex X has at least six principal vertices, and any

nonprincipal vertices share an edge.

Proof. If a 3-cube C arises from diagram (d), (e), or (f), it has up to two nonprincipal vertices,

marked as gray in Figure 12. If there are two nonprincipal vertices, they share an edge as seen in

the Figure. �

The following lemma is used later in the chapter.



4. THE CUBE COMPLEX 25

LEMMA 4.10. No planar diagram ∆ consists of a 3-cube diagram from Figure 12 sharing two

2-cells with a copy of diagram (b) from Figure 6.

Proof. By Remark 4.5, we need only show that it is impossible to glue a copy of diagram (b)

to a copy of diagram (d) and satisfy the isoperimetric inequality; (e) and (f) follow. As Figure

13 shows, such a gluing fails the isoperimetric inequality with five 2-cells and boundary length six;

alternatively one can use Remark 4.2 to see that Cancel of the resulting diagram is 7 while the size

of the diagram is 5.

Figure 13. Gluing two of the cells of the original diagram (b) to the 3-cube dia-
grams of Figure 12.

�

We use Lemma 4.8 to rule out cubes of dimension 4 or more in the cube complex.

LEMMA 4.11. (4-cubes) There are no 4-cubes (and hence no n-cubes if n ≥ 4) in the cube complex

X.

Proof. We build all diagrams with four hypergraphs pairwise intersecting, starting with a 3-

cube diagram from Figure 12, then show they fail our inequalities. Throughout we refer to Figure

14. First we use (e) as our base 3-cube, and note Cancel(e) = 6 and ∣e∣ = 5. There are already four

hypergraphs present in (e), so to form a 4-cube diagram we need to add more cells and either make

the non-intersecting hypergraphs intersect, or add a new fourth hypergraph. First we try adding no

new hypergraphs. Forming a new diagram (e′) by adding one more cell makes Cancel(e′) = 8 and

∣e′∣ = 6, which violates the strictness of (∗). In Figure 14 we show two different gluings for e′, and as

mentioned in Remark 4.5 this does not change our failure of the inequality. We could also add two

more 2-cells and form an (f) subdiagram, but by the second fact in Remark 4.5 this diagram (e′′)

will also fail the inequality.

Next we try to use a fourth hypergraph not already present in (e), which means we add at least

three more 2-cells for the three intersections with existing hypergraphs. Adding exactly three 2-

cells to form (d) and (e) subdiagrams in a non-planar diagram (e′′′) adds 5 to Cancel(e), which

doesn’t satisfy the inequality. As above, placement of the additional cells does not change the ratio



4. THE CUBE COMPLEX 26

Cancel(e′′′)
∣e′′′∣ . Also as in e′′, adding two more 2-cells to form (f) subdiagrams still fails the inequality

(this case is not pictured).

Now we start with (f) as our base 3-cube. We need only consider diagrams that use (d) as the

additional 3-cubes, for in the previous paragraphs we have dealt with all possible 4-cube diagrams

that contain a copy of (e). Any such diagram will contain a copy of (e′) as a subdiagram, so we are

done.

Finally we try to build a 4-cube using only copies of (d). Adding squares to any boundary of

(d) results in (e). If we add squares to interior edges of (d), we create (d′) with ∣d′∣ = 6 and

Cancel(d′) = 8, which also fails the strict inequality. �

Figure 14. Cases from Lemma 4.11. Top: two different (e′), (e′′), (e′′′). Middle:
(f ′), (f ′′), (f ′′′). Bottom: (d′).

We now turn to the G-action on X. If g ∈ G,xv, xw ∈X are principal and g.v = w for the correspond-

ing group elements v,w, then g.xv = xw. Throughout the paper, if g stabilizes a principal vertex
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xv, we assume that v is the identity element. For as v.xe = xv, we have v−1gv.xe = xe and v−1gv

stabilizes the identity vertex e in Γ. This conjugation does not affect any of our arguments.

The following technical lemmas explore the action of G on X in more detail. For an illustrative

example, Figure 15 shows some possible images of these isometries on an example 3-cube. We use

these lemmas to prove Proposition 4.15 regarding stabilizers of vertices under this action.

Figure 15. The left shows a reflection through a face with four fixed vertices and
all x-stabilizing such cube images. Then a rotation about an edge with two fixed
vertices, with the six different possibilities. Finally a rotation about a corner with
one fixed vertex, rotated for perspective.

LEMMA 4.12. If C is a 3-cube in X and there exists a g ∈ G and vertex x ∈ C such that g.C∩C = {x},

then x is principal.

Proof. We need to address the cases where C arises from diagram (d), (e), or (f) in Figure

12. First, suppose C arises from diagram (d). As g.C ∩C = {x}, no hypergraph is sent to another

of the three under the g action. Consider the principal vertex y which is antipodal to x in C, so

d(x, y) = 3, where distance is measured in the 1-skeleton of the cube complex. Since C is non-

positively curved, the combinatorial distance in the 1-skeleton equals the number of hypergraphs

crossed by the geodesic path, per Theorem 14.3 in [34], and so d(g.y, y) = 6. Since y is principal by

Corollary 4.9, we assume it is xe, and so g.xe = xg is principal. Then g is on the other side of six

hypergraphs from e in Γ: the original three corresponding to the cube, and their images under the

g action.

In the bottom of (d) in Figure 12, we can indicate where xe is located in X as the black dot, if x

is the antipodal vertex marked by the gray dot. Now g is somewhere in the Cayley complex on the

other side of all three hypergraphs from e, as on the left hand side of Figure 16. Without loss of

generality we choose a single two-sided hypergraph l to cross first. Crossing l puts us in a region l+

from which we must cross the two other hypergraphs h and k. But h and k cross in l−, so the only

way we can cross both and end up with a principal vertex is if they cross again somewhere further

in l+. Two hypergraphs intersecting twice must satisfy one of the diagrams in Figure 6 per Lemma
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l

kg

e
l

h k

v

g

Figure 16. The hypergraphs from diagram (d) in Figure 12, with e and g.e vertices
marked.

4.3. Since l lies between the two crossings, h and k must form diagram (c), as in the right hand

side of Figure 16. As no other hypergraphs have been involved, the new region includes a vertex v

marked in the figure such that xv has all the same orientations as x, so xv = x. Thus x is principal.

Now suppose C is represented by diagram (e) and now has two nonprincipal vertices, and x is

nonprincipal. If x is shared by C and its neighboring 3-cube which arises from the (d) subdiagram

in (e), then x is the nonprincipal vertex in a (d)-diagram cube and the argument above holds. Then

let x be the second nonprincipal vertex, and choose xe to be antipodal to it in C. As with diagram

(d), g must be on the other side of all three hypergraphs from e. By an identical argument to the (d)

case, this requires two of the three to cross a second time, on the other side of the third. However,

none of the diagrams in Figure 6 can accommodate diagram (e), so this is impossible.

The same argument as (e) holds for diagram (f). �

LEMMA 4.13. If C is a 3-cube in X and g.C ∩C is an edge with at least one fixed endpoint vertex,

then the vertices in that edge are principal.

Proof. If g.C ∩ C is an edge including x and xv, then exactly one of the three hyperplanes

defining C, say h, is sent to one of this set. Suppose that C arises from diagram (d), and assume for

contradiction that x is non-principal. Then xv is a principal vertex associated with one of the corner

vertices v in diagram (d). We glue on a second 3-cube diagram that shares the vertex v with the

initial diagram or connects to the initial diagram through a series of copies of diagram (a), which

form new vertices in Γ that correspond with the same vertex v in X. To share x, the second 3-cube
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diagram must contain the hyperplane h which runs through the two squares that do not include v

(for v is adjacent to x through that hyperplane), as in Figure 17.

The carrier of h connects the two diagrams. Since Γ is simply connected and a path through v also

connects the diagrams, the carrier of h and v form a loop which is filled by a disc in Γ. In particular,

the hypergraph from our original diagram which enters this region next to v must exit the region at

some point. Call this hypergraph l. Note l cannot exit through the original diagram nor through

any copies of diagram (a). So l must cross h again. As in Lemma 4.12, l and h must form diagram

(c), which forms a new region with all the same orientations as x, so x is principal.

v

h l

v

h

w

l

Figure 17. Gluing another 3-cube to the original (top left) one. They share vertex
v and hypergraph h. On the right, an example of an included diagram (a), so v
and w correspond to the same xv in X.

Now suppose C arises from diagram (e), and again x is a nonprincipal vertex. If the shared edge is

between x and a principal vertex, then the same argument as in diagram (d) holds. Hence assume

the shared edge is between the two nonprincipal vertices in diagram (e). The image cube g.C has six

principal vertices by Corollary 4.9. There must exist an image hypergraph l′ so that crossing l′ from

x results in a region containing a vertex w in the Cayley complex Γ, leading to a principal vertex

xw in g.C. Consider the orientations that result in x in diagram (e), as in Figure 18. We know xw

differs from x only in l′, and so has the same orientations of the four hypergraphs in diagram (e)

as x. Then, as in Lemma 4.12, two of the hypergraphs must cross again on the other side of the

third, and hence form one of the diagrams from Figure 6. This is impossible, and so this case cannot

occur. An identical argument holds for diagram (f).

�

LEMMA 4.14. If C is a 3-cube in X, g.C ∩ C contains a face including a nonprincipal vertex x,

and g.x = x, then g fixes more than one vertex in C.
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k

m
k

     +

w

l'

h

Figure 18. k and h need to cross in m+, since w is on the positive side of h. This
is impossible.

Proof. Suppose g.C ∩C contains a face and g fixes a vertex x in that face. Assume C arises

from a (d) diagram. Choose three vertices as the rest of the shared face with x; these all lie on

one boundary side of the (d) diagram. We need to find a diagram to represent the adjacent 3-cube

which shares this face.

By Lemma 4.8, there are only three possible diagrams to represent the adjacent 3-cube. Since G

acts on Γ by isometries, g.C must also be represented by a (d) diagram. Since C and g.C share

x, which is defined by its orientations of three specific hypergraphs, g.C must be represented by a

(d) diagram with the same three hypergraphs as C. Note here that this may not be the exact same

collection of 2-cells as C; for instance, C and g.C could form a copy of diagram (c) from Figure

6. Nevertheless, any three pairwise intersecting hypergraphs uniquely determine a cube in X, so

g.C = C necessarily. Then the antipodal vertex to x is fixed and we are done.

An identical argument holds if C arises from diagrams (e) or (f). �

PROPOSITION 4.15. If x is a vertex in the cube complex, then Stab(x) ≤ Stab(xw), where xw is

a principal vertex.

Proof. Let x be an nonprincipal vertex in X, and g.x = x. Let d be the maximal dimension

of cubes containing x. We prove the claim for each d by either finding a principal vertex whose

stabilizer contains Stab(x) or showing that x itself is principal. Since the Cayley complex is a

square complex where every hypergraph intersects at least one other hypergraph, every vertex of

the cube complex is part of a square, so d > 1.
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If d = 2, then x is the corner of a square, corresponding to an intersection of two hypergraphs in

the Cayley complex. Any hypergraph intersection in the Cayley complex results in a collection of

parallel squares in the cube complex. To have a nontrivial such parallelism between d-cubes, one

needs (d+1) cubes to support the parallel copies. But since d = 2 is maximal, there is only one such

square, and x corresponds to one of the four regions formed by this intersection, so x is principal.

Now suppose d = 3, so we can apply the previous lemmas. Let C denote a 3-cube containing our

nonprincipal vertex x. If there exists a g ∈ Stab(x) that fixes only x and no other element in C, then

g.C ∩C is either x, an edge containing x, a face containing x, or all of C. But if g.C ∩C = C, then

by the argument in Lemma 4.14 g fixes a second vertex, so this case cannot occur. The remaining

cases are dealt with in Lemmas 4.12, 4.13, and 4.14, which say that x is actually principal, so we

are done.

Otherwise every g in Stab(x) fixes more than one element in C. By the previous three lemmas, g

must send C to C. Since g fixes x, this means g must also fix the vertex xw antipodal to x across C.

Since xw is antipodal to x, it cannot be nonprincipal by Corollary 4.9. Hence Stab(x) ≤ Stab(xw),

a principal vertex.

We cannot have any diagrams that satisfy (∗) with d ≥ 4 by Lemma 4.11.

�

We use the lemmas from this section to prove freedom of vertex stabilizers in Proposition 4.18 and

Corollary 4.19 in the next section.

5. Proof of Theorem 4.1

To prove Proposition 4.16, which shows finite generation, we build a specific diagram ∆ out of

diagrams collared by hypergraphs and paths. Our goal is make ∆ a collection of disk diagrams

glued together at cut points. We start with a principal vertex-stabilizing element g ∈ G, and assume

as before that g stabilizes the identity vertex xe in X. So we choose a geodesic path γ in Γ starting

from e that reads off a word w that represents g.

Since g.x = x, any hypergraph that γ crosses is crossed again later in γ. Look at the hypergraph h0

which crosses the first letter of w. Read along w until we cross h0 again. The traversed segment of

γ and part of h0 form a diagram ∆ collared by a path and a hypergraph, as guaranteed by Lemma

3.17 in [30]. Note h0 does not intersect any interior cells of ∆, since we chose the first two (h0,w)
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intersections along γ, so we meet the requirement to be a collared rather than quasicollared diagram.

Let σ indicate the non-γ part of ∂∆. We continue to build up ∆ iteratively.

Look at the next hypergraph h dual to γ, reading along w as a word. We consider the parity of the

number of times h has intersected γ, including this current intersection point.

zy

y

y

y

y

z

z

z

z

z

Figure 19. Building the diagram for Proposition 4.16. z is indicated by the green
dots. On the right, y (orange dot) is our current point; on the left we choose y or
it does not exist. In the bottom left, we also choose a new z; the old z is indicated
in a lighter color. The path p is in fuschia.

Assume this parity is odd, so there is a next (h, γ) intersection point z as we read w which we match

with our current intersection point. Starting from our current intersection point and traveling along

h toward z, if h exits ∆, we label that point y. Note y may be our current intersection point. If no

such y exists, the entire ladder of this segment of h between our current point and z is already in

∆ and we do nothing. If the segment of h between z and y intersects ∆, we choose the intersection

point of ∂∆ and h and rename it to z. These cases are illustrated in Figure 19.

Consider the segment of h between z and y, and the path on γ∪∂∆ that connects z and y consisting

of subpaths of γ and possibly σ. These bound a disk, and since we chose z to be the next intersection

point, this forms a diagram collared by a hypergraph h and a path p′. Here, p′ is the path p between

z and y extended to include the half-edges on either end which connect to the ladder of h.

By our choices of z and y, the interior of this new collared diagram is disjoint from our existing ∆

and the next edge of γ which continues the ray from y to z. We glue the new diagram to ∆ along
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p′, and call the resulting diagram ∆ as well. We note by our construction that h may form disjoint

components inside ∆, as in Figure 20. In this case when considering the hypergraphs of ∆ we treat

each of these components as a distinct hypergraph.

Figure 20. Same hypergraph in Γ may make separate components in ∆, we treat
this as two different hypergraphs.

If the parity is even, then we have already added the relevant disk to the diagram from the previous

time we encountered h, and we do nothing. Once we reach the end of γ, we have a Van Kampen

diagram ∆ of which part of the boundary may be part of γ, and the rest of the boundary is a

concatenation of boundaries of carriers of γ−crossing hypergraphs.

Note that γ separates the planar diagram ∆ into two sides, each of which may contain several or

no components, which we can label g+ and g−. At least one of these sides is non-trivial if ∆ is

non-trivial, which is the case as long as γ is non-trivial. These sides depend on our choice of planar

embedding of ∆, but once we have chosen such an embedding the sides are no longer ambiguous.

Via this construction, each γ−crossing hypergraph h contributes a disk subdiagram to ∆, on one of

these sides. We say h belongs to g+ if its disk subdiagram appears in g+, and the same for g−. Note

also that ∆ can be seen as a collection of disks Di connected by cut-points that lie along γ: every

edge in γ borders a square, so there are no cut-edges, and by construction the only cut-points are

on γ.

PROPOSITION 4.16. (Finite generation) In the square model at d < 1/3, principal vertex stabiliz-

ers are generated by two letter words of a certain form, which can be seen as green paths in Figure

21.

Note that as hypergraphs are embedded trees, the labels of the paths in ∂D complementary to the

marked green paths are uniquely determined by the labels of the green paths in each diagram D in

Figure 21. For the same reason, given a generating two letter word as in Proposition 4.16, there

exists a unique diagram from Figure 21 where it appears as the label of a green path.
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Figure 21. Options from Proposition 4.16: note the two letters of each green path
are dual to the same hypergraph

COROLLARY 4.17. Vertex stabilizers of principal vertices are finitely generated.

Proof. Random groups are finitely generated, so this follows immediately from Proposition

4.16. This also follows immediately from Corollary C in [13]. �

Throughout the proof of Proposition 4.16 we find two hypergraphs that intersect twice, and apply

Lemma 4.4 to say they must form a diagram from Figure 6. We consider these requisite diagrams

without explicitly referring to Lemma 4.4.

Proof of Proposition 4.16. Suppose g ∈ G stabilizes a principal vertex, which without loss

of generality is xe. Choose a word w of minimal length that represents g, and look at a geodesic path

γ in Γ which reads off w. The path γ cannot essentially cross any wall, for then g would swap such a

wall’s orientation and move xe to a different vertex in X under the action. We use the construction

above to form the diagram ∆, consisting of disk diagrams Di connected at cut points which lie along

γ.

Each Di contains a specified subpath γi ⊂ γ representing a group element gi so that g = g1⋯gn.

Below, we inductively choose a w′
i equal in the group to gi, and show w′

i can be written as a product

of appropriate two-letter words by finding a path γ′i that reads off w′
i. We then concatenate the w′

i

appropriately to find a word w′ equal in the group to g, and as each factor is a product of appropriate

two-letter words, so too is w′. Then we need only consider a single factor, so in the following, we

use ∆, g,w′ for Di, gi,w
′
i and assume we have no cut-points in ∆.

Starting from the beginning of w, we order the components of the boundary path σ (which is cut into

components by γ) based on their first intersection points with γ, read as a word w. By construction,

no two σ components intersect γ at the same initial point, and so we can index them into σj by

these initial intersection points. We use these σj to build γ′.

Base Step. Begin with σ1. Suppose the first letter of σ1 is dual to a hypergraph l. Upon entry

to ∆, l immediately intersects a γ−crossing hypergraph h. Note that h may be dual to the first or
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second letter of g, as in Figure 22. Say h belongs to g+, and call this initial intersection 2-cell C.

We consider the possibilities for l:

Figure 22. Left: h is dual to the first letter of g. Right: h is dual to the second
letter of g. Far right: h is dual to the second letter of g and forms a diagram (a)
with l. The blue hypergraph is h; the red is l. The thick line represents σ1 and the
green is γ.

(1) Suppose l does not cross γ. As l must exit ∆, it must re-cross h inside ∆ and so form

one of the diagrams from Figure 4.3 as a subdiagram of ∆. If they form diagram (c), then

there is a third hypergraph k which intersects both.

(1a) Suppose k does not cross γ. Then as with l, k must intersect h again to exit the

diagram. Consider the subdiagram of ∆ formed by the two k−h intersection cells and

the ladders of k and h between these cells. As the immediate neighbors of k along h

are both l, this subdiagram must be a diagram (c) with l as the third hypergraph.

Thus we must glue together two copies of diagram (c) including the new intersection

cell and the one included in our initial diagram (c), which is impossible by Lemma

4.6.

(1b) Now suppose k crosses γ. If k belongs to g+, then l must cross k again to exit ∆. If

k belongs to g−, then h must cross k again to exit ∆. In either case, k again forms

a second copy of diagram (c) sharing one of the cells from the initial diagram (c),

impossible as in the previous case.

Thus l and h must form diagram (a) or (b). We choose the two letters dual to l along

σ as the first two letters of w′, which gives us a two letter factor of our final word with the

property we desire.

(2A) Now suppose that l crosses γ and h is dual to the first letter of g. Since l is the first

hypergraph dual to σ1, l belongs to g− and so must cross γ again. In order to exit ∆, l

must intersect h twice and C must be a corner of the resulting diagram, which is one of

diagrams (a), (b), or (c). By the above argument, they cannot form diagram (c). So the

two intersections must form diagrams (a) or (b). Since h belongs to g+ and l belongs to

g−, a subsection of γ must run through the diagram. By choice of C, γ intersects h in the
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diagram. We claim that γ also intersects l in the diagram: for if l does not intersect γ,

l exits ∆ after it intersects h for the second time. There is no possible other hypergraph

belonging to g+ to allow l to stay in ∆ as h is the first hypergraph forming σ1.

As γ runs along the boundary edge of C dual to h if h intersects γ on the first letter

of g, the first edge must appear on the boundary of the resulting diagram. We deal with

the case when h intersects γ on the second letter in Case 2B.The possibilities for the first

few edges of γ appear in Figure 23.

C
C C C C

Figure 23. Possibilities for the first letters of w (hence of γ) in the base case are in
green, and choices for w′ are in purple if such a choice exists. The blue hypergraph
is h; the red is l.

(1a) If l and h form diagram (a), the two 2-cells of diagram (a) must lie on opposite sides of

γ. This forces three of the edges of C to lie along γ, which contradicts the geodesicity

of γ.

(1b) If l and h form diagram (b), we have four possibilities for the γ path.

(1bi) If h is the shorter hypergraph in diagram (b) and γ begins in the top left corner,

then we choose the first two letters of w′ as the ones on the top of diagram (b),

dual to l. Note that in this case that h cannot be the longer hypergraph, since

the γ edge dual to h must lie on ∂C. We claim that this choice of two edges for

γ′ ends at a point on σ1.

Suppose that we do not, so there is some other edge e which is the second edge

of σ1, and a corresponding hypergraph k dual to e. As h belongs to g+, k cannot

be h. Note the second edge of σ1 shares a vertex with the second edge of our

chosen γ′.

In order for l to be dual to two edges that share a common vertex, l must pass

through at least two 2-cells between these edges. This may form a diagram (a),

as on the left of Figure 24. Alternatively, l may pass through four 2-cells, which

form a diagram (b), as in the next diagram of Figure 24. Any further nesting of

copies of diagram a violates the isoperimetric inequality, so these are the only

two possibilities. In either case, the resulting diagram violates the isoperimetric

inequality by Lemma 4.7, so k cannot be l.
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By the construction of ∆, after entering ∆ k immediately crosses another hy-

pergraph j which belongs to g+. So j cannot be l. If two adjacent edges on σ1

belong to the same γ−crossing hypergraph, then they must be consecutive in

the ladder of that hypergraph, so j cannot be h either. See the right diagram

in Figure 24. As j belongs to g+, in order to exit ∆ l must cross j twice. Then

l and j form one of the diagrams from Figure 4.3 as a subdiagram of ∆. This

subdiagram contains the entire ladder segments between intersections of both

hypergraphs, so it must share at least a vertex with the original l − h diagram

b. By Lemma 4.7, this cannot occur.

C C C

Figure 24. The argument that j is not l (left two diagrams) and intersects l twice
(right diagram). In all, l is red hypergraph and j is olive.

Then l and j cannot intersect twice, so j cannot exist. Then k does not exist,

and so both of the edges on the top of diagram (b) lie on σ1, and so this choice

of w′ allows us to move on to the inductive step below.

(1bii) If h is the shorter hypergraph in diagram (b) and γ begins in the middle left of

the diagram as in the third picture in Figure 23, then no part of C is on ∂∆, so

l is not the first letter dual to σ1 as we assumed. Then this case cannot occur.

(1biii) If h is the longer hypergraph in diagram (b), then we choose the first letter of

w and the second letter dual to h as the first two letters of w′. Note that γ has

only one possible third edge in the diagram, as marked in the fourth diagram of

Figure 23, as γ must be a geodesic. So the top right cell of diagram (b) is the

first cell in the carrier of l. Thus we end up on σ2 and we can continue to the

inductive step with this choice of w′.

(1biv) Suppose γ runs along the top two edges of diagram (b) and does not cross l

in the diagram, as in the last diagram of Figure 23. In order for l to cross γ

without exiting ∆, there must be a third hypergraph k which belongs to g+ and

defines some of σ1. The only possibility for k is the third hypergraph in diagram
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(b). To exit g−, k must intersect l, which means that h, k, and l all pairwise

intersect and form a 3-cube. This cannot occur by Lemma 4.10.

(1c) As in case 1 when l does not cross γ, l and h cannot form diagram (c).

(2B) Suppose l crosses γ and h intersects γ on the second letter of w, as in the right two diagrams

of Figure 22. We show that this case cannot occur.

(1a) Suppose l and h form a copy of diagram (a) with γ on two edges, as in the right side of

Figure 22. As l belongs to g−, h must intersect l in g− in order to exit ∆. Then h and

l must form a second diagram from Figure 6 glued to this copy of diagram (a) sharing

one 2-cell; any such possibility violates the isoperimetric inequality by Remark 4.2.

(1b) Suppose there exists a third hypergraph k which is dual to the first letter of w, and

which intersects both h and γ, as in the middle diagram of Figure 22. Let C ′ denote

the 2-cell whose boundary includes the first two edges of γ.

(1bi) Suppose k intersects h twice; this case is illustrated in Figure 25. If k intersects

h again in g−, then they may form a diagram (a) with C ′. In this case k belongs

to g−, and intersects h again in g+ to leave g+. If they intersect in g− but no

diagram (a) occurs, then k belongs to g+ and because of C along the ladder of

h, k and h form a diagram (c). If k intersects h again in g+, then due to the

presence of C, k and h must form diagram (c) with l as the third hypergraph.

We know l and h intersect twice, and as l is the third hypergraph in the k − h

diagram, l and h must form another diagram c, which is impossible by the

argument in Case 1.

C' C'
c c

Figure 25. Left: presence of l (in red) forces a diagram c between k (in teal) and
h (in blue). Right: If k belongs to g−, same effect.

(1bii) Then assume k does not intersect h twice. Then k belongs to g+, and the second

k − γ intersection point lies between the h − γ intersection points along γ. The

following argument is used often later (we refer to it as Case 1(b)ii), so we
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ignore the presence of C (which would just make the failure of the isoperimetric

inequality worse).

(A) Suppose there exists a hypergraph j which intersects k twice in g+. If j

does not intersect h twice in g+, then j belongs to g+ and its γ intersection

points lie between the h−γ intersection points, and we apply this argument

to j instead of to k. Then assume j intersects h twice in g+. The only

possibility is that the three hypergraphs form a subdiagram (b) from Figure

4.3. Note if this subdiagram b is glued to C ′ along two edges, we fail the

isoperimetric inequality as we did in Case 1(b)i. So ladders of l and k must

exist between C ′ and diagram b. Such a diagram with no internal 2-cells

has 8 + 2n boundary length and 7 + 2n 2-cells as seen in the left side of

Figure 26, which also fails the isoperimetric inequality. Any diagram with

internal 2-cells will have a lower boundary-length-to-area ratio, and also

fail the isoperimetric inequality. Then no j intersecting l twice can exist.

C'

x

Figure 26. Failure of the isoperimetric inequality if the k−γ and h−γ intersection
points stagger. The blue hypergraph is h, the teal is k, purple is a hypergraph j
that intersects both twice in the left, and once on the right.

Note that this argument also holds if we assume γ runs along the other

two edges of C ′, so that the k − γ intersection points are nested between

the h − γ intersection points and k and h do not intersect. We use this

argument in later cases.

(B) Every hypergraph that intersects k in g+ only intersects it once, and so

must intersect γ. Let x denote the second intersection point of k with γ.

The hypergraph j that crosses k in the 2-cell containing x also intersects γ.

Following the path from the first letter of γ to x along the top boundary

of the ladder of k, as the pink line in Figure 26 indicates, gives a length

n+1.5 path, where n indicates the number of hypergraphs that intersect k

in g+. However, the γ path between these points on the other side of the
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ladder of l has length n + 2.5, so γ is not a geodesic, contradiction. So the

k − γ intersection points cannot stagger with the j − γ intersection points.

As above this argument holds if γ runs along the other two edges of C ′ as

well and we cut out the k − h intersection.

Inductive Step.We have established the base case of our inductive argument. Assume for our

inductive hypothesis that we have just added a new pair of edges to γ′, which has even length, and

which ends at distance less than or equal to 1 from γ. Thus far γ′ is a product of 2-letter words

from the statement of Proposition 4.16, and we have ended at a vertex on σi.

Now we iterate the argument, and show that we end at a vertex on σ after choosing particular paths

to add to γ′. Note if σi ends on γ and we are at that ending vertex before choosing our next edges

for γ′, then we have already written a subword of w as a product of desired 2-letter words. Then we

could start at the next letter as the beginning of a new w, creating a new diagram for it, which would

also create a cut-point in our diagram. So we have reached the end of w as we assumed there are

no cut-points in the construction of the diagram, and the algorithm is complete. Hence we assume

that we have not previously ended where σi and γ meet. Let l be the next hypergraph dual to σi,

heading toward the end of w from the end of γ′ as constructed so far.

As in Case 1 of the Base Step, if l does not cross γ, then l must immediately exit the diagram

forming diagram (a) or (b).

So we assume l crosses γ, intersecting a γ-crossing hypergraph h as l enters ∆ at a point p in a 2-cell

C. Assume σi is in g+, so h belongs to g+ and l belongs to g−. Then l must intersect h again, and

form a subdiagram from Figure 4.3. As in the Base Step, l and h do not form a diagram (c), so l

crosses h at consecutive edges along h. Since l enters ∆ at p, the next edge of σi follows the ladder

of h and not some other hypergraph that belongs to g+. Thus if l does not cross γ between the two

times that h crosses γ, then l exits σi without crossing γ at all.

Then we assume l crosses γ at least once between the two times that h crosses γ. Then at least one

of the l− γ intersection points lies between the two l−h intersection points on l, so γ must intersect

l in the subdiagram.

Each of the following cases offers a different configuration for l, h, the σi edge dual to l, and the

portion of γ inside the subdiagram. In each we propose the two letters to add to γ′. We need to

show two things: that we start at the appropriate vertex of the indicated σi edge, and that we end

on σ so the algorithm can continue.
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(1) If they form diagram (a), it may be contained in a (b) superdiagram.

(1a) If this (a) is contained in no (b) superdiagram, then there are two paths for γ to run

through the diagram: either dual to both h and l, or along the other boundary edge

dual to l, as illustrated in Figure 27. In either case, l belongs to g− and we choose the

two edges dual to l to add to γ′.

σ
i σ

i

x x

Figure 27. The possibilities for γ in diagram (a) are in green. The red is l, blue
is h, top left edge is part of σi, and we choose the purple edges for γ′.

Our inductive hypothesis says that we do not start where σi meets γ, so we start at

the desired left vertex of σi in the figure.

Suppose that we do not end on σi+1, so there is some hypergraph k which belongs

to g− that hits γ earlier than l does. To leave g−, h must intersect k. Depending

on whether h or k intersects γ earlier, h and k intersect a second time in g− or g+.

So h and k intersect twice, so they form a subdiagram from Figure 4.3. As the h − l

intersections lie between the h−k intersections as read along h, the h− l diagram must

be a subdiagram of the h − k diagram. We assumed this diagram is contained in no

(b) superdiagram, so k cannot exist. Thus the terminal vertex of the second edge dual

to l edge lies on σi+1, so our algorithm can continue.

(1b) If this (a) is contained in a (b) superdiagram, then l is entirely contained in the (a)

diagram as it must enter on a boundary, as in the left hand picture in Figure 23. Since

γ must cross l inside the diagram, γ must intersect σi at the bottom of diagram (b).

Let k denote the third hypergraph in the (b) superdiagram, as in Figure 28.

Figure 28. The possibilities for γ in diagram (a) with a (b) superdiagram are in
green. As usual, red is l and blue is h. On the right, case where γ never intersects
k, the hypergraph in teal.
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If γ runs along the edge dual to l and never intersects k, then h necessarily intersects

k two more times in order to cross γ, as on the right in Figure 28. There is no way

to glue together three diagrams from Figure 4.3 that share appropriate 2-cells and

satisfy the isoperimetric inequality, as can be readily seen using Remark 4.2.

Thus γ must run up the middle of diagram (b) by geodesicity as on the left in Figure

28, so γ intersects k.

Assume k belongs to g+. If k intersects l, then we have three pairwise intersecting

hypergraphs and need to glue a 3-cube diagram to this one, which is impossible by

Lemma 4.6. Otherwise, either k intersects h a third time, which is impossible by

Lemma 4.7, or its γ intersection points stagger with those of h which is impossible by

an argument identical to Base Case 1(b)ii.

Thus k belongs to g−. We have two possibilities.

(1bi) Suppose l intersects γ twice between the k−γ intersection points. An argument

identical to Base Case 1(b)ii shows this is impossible, where γ runs on the other

two edges of C ′. So the l−γ intersection points cannot be nested inside the k−γ

intersection points.

(1bii) If l and k stagger their γ intersection points, then l and k intersect somewhere

in g−. Then h, l, k are three pairwise intersecting hypergraphs, and so form a

3−cube and a subdiagram from Figure 12. Gluing any of these three diagrams to

the two 2-cells we know lie in g+ fails the isoperimetric inequality as in Lemma

4.10, so this case also cannot occur.

(2) If l and h form diagram (b), our choice of γ′ depends on how γ appears in diagram (b).

Unlike in the Base Step, γ does not need to have an edge on the boundary of the diagram.

The σ1 case has already dealt with some of the possibilities for γ in Figure 23, but we need

to address all of them. We consider all possible γ subpaths that intersect l, as in Figure

29.

(2a) Suppose γ runs along the vertical path of length 3 in diagram (b), so two cells of

diagram (b) each lie in g+ and g−.

(2ai) Suppose l is the shorter hypergraph in diagram (b). This is the same as the

earlier case with an (a) subdiagram contained in a (b) superdiagram (Inductive

Case 1b), with l as k in that case and h remaining the same.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 29. The other possibilities for γ in diagram (b), along with the choices for
γ′. The red hypergraph is l, the blue is h, green is γ, purple is our choice of γ′ if
applicable, and the bolded edge is σi.

(2aii) Now suppose l is the longer hypergraph in diagram (b), and let k denote the

third hypergraph in the diagram. By the argument in case 1b, k cannot be-

long to the same side of g as h does, so k belongs to g−. To exit g+, k must

intersect h somewhere in g+. Thus h, k, and l are three pairwise intersecting

hyperplanes and must form a 3-cube diagram from Figure 12. By Lemma 4.10

this is impossible.

(2b) Suppose γ runs along two boundary edges of diagram (b), the outside of a corner. We

choose the top two edges of diagram (b) as the next two edges of γ′.

(2bi) If l is the longer hypergraph in diagram (b), one of its edges is dual to γ and

one edge is dual to σi by construction. If we start in the middle of the diagram,

we either followed the edge dual to γ or a different edge to get here. If we

followed the edge dual to γ, by the inductive hypothesis this edge is part of a

diagram from Figure 19, which glues to our diagram b via an edge. Similarly, if

we followed a different edge, we glue such a diagram to ours via a vertex. Both

cases are impossible by Lemma 4.7.

(2bii) Suppose h is the longer hypergraph in diagram (b). Assume we start in the

middle of the diagram, at the bottom of the edge of σi dual to l. If we have

been following the ladder of h, then necessarily the bottom two edges of diagram

(b) are also on σi. If h crosses l again in g−, we have to glue a copy of diagram

(a), (b), or (c) to this diagram (b) sharing a 2-cell, which fails the isoperimetric
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inequality by Remark 4.2. However, if h does not cross l again in g−, by the

inductive hypothesis the previous two letters we added to get to this point form

one of the desired diagrams in Figure 19, which means we must have one of those

diagrams glued to this one at a vertex. As in Lemma 4.7, this is impossible. So

we start in the corner as desired.

Then we end in the middle of γ along the ladder of l. If this point is not the beginning

of σi+1, then there exists a k belonging to g− which hits γ earlier than l, and an

argument almost identical to Inductive Case 1a holds, which would require a diagram

from Figure 4.3 to contain this diagram (b) as a subdiagram. Thus we end at the

beginning point of σi+1 so our algorithm can continue.

(2c) Suppose γ runs along a path of length 2 in diagram (b) and separates an (a) subdi-

agram to g−, so h is necessarily the shorter hypergraph . We choose the two letters

dual to l along the top of diagram (b) for the next two letters of γ′.

If we are at the middle of the diagram, the argument for gluing another diagram to

this one from Inductive Case 2(b)i holds. Thus we are at the corner of the diagram.

We are either still on σi following the ladder of h and our algorithm can continue, or

have hit γ and our algorithm terminates.

(2d) If γ runs along the top of diagram (b), then either l does not intersect γ (if it is the

shorter hypergraph) or l does not intersect σi (if it is the longer hypergraph), contrary

to our assumptions.

(2e) If γ runs along one side and then cuts across the diagram (see Figure 29), it necessarily

separates a diagram (a) from a diagram (b) as in Inductive Case 2c. If l is the long

hypergraph, then the argument from that case holds. So assume that l is the short

hypergraph, and σi is dual to the other boundary edge dual to l. Then h belongs to

g−, contrary to our assumption.

(2f) Suppose γ runs along the non-boundary corner of one of the top 2-cells. We choose

the top two boundary edges of the diagram for γ′.

(2fi) If l is the longer hypergraph, either boundary edge dual to l may be on σi,

but in either case we want to show that we start at a corner of the diagram.

The argument from Inductive Case 2(b)i shows we are not in the middle of the

diagram.
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Now we show that we end on σi+1. If not, then there is some other hypergraph

k which belongs to g− with the k − γ intersection points surrounding the l − γ

intersection points. This is impossible by Base Case 1(b)ii.

(2fii) Assume h is the longer hypergraph. Consider the third hypergraph in the di-

agram, k. If k does not intersect γ, then it must intersect l twice to leave g−,

which makes a three-cube. We cannot glue a three cube diagram to this dia-

gram by Lemma 4.10. Then k does intersect γ and does not intersect l, so k

belongs to g− and its γ intersection points are nested inside the γ− l intersection

points, which is impossible by Base Case 1(b)ii. Then h cannot be the longer

hypergraph.

(2g) If γ runs along one top edge and turns down the middle of the diagram, then by

geodesicity it necessarily turns the other direction to exit the diagram. If h is the

longer hypergraph, this is identical to Base Case 1(b)iii. Then assume l is the longer

hypergraph, so we know the non-γ edge dual to l corresponds to σi. By the argument

in Case 2(b)i, we start in the corner we desire.

By the argument in Case 1(b)ii, no hypergraph belonging to g− nests its γ-intersection

points around l, so the entirety of σi+1 is visible in the diagram, and we end on σi+1.

(2h) If γ runs down the side of the diagram, then l is necessarily the shorter hypergraph.

The opposite edge dual to l is on σi, and we choose two edges that cut across the

diagram for γ′.

(3) As in case 1 of the base step, l and h cannot form diagram (c).

Conclusion. The base step established that the first two letters of our chosen w′ are in the form

shown in Figure 4.16, and that we can continue on to the inductive step. The inductive step shows

that either the next choice of two letters satisfies the proposition, or the algorithm terminates.

Throughout we choose two particular edges to add to γ′, and show that the end of these edges still

lies on σ.

�

LEMMA 4.18. (Freedom) Principal vertex stabilizers are free.

Proof. We choose from the collection of two-letter words from Proposition 4.16 for the basis

of our free group, and show this group is isomorphic to a visible vertex stabilizer. Consider this

collection of words as a set S generating a free group F (S), and choose a minimally-sized generating
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set of two letter words. In S we label these as xab where ab is one of the two letter vertex stabilizing

words. If any of our minimal generating set form diagram (a) with another word in the set, we

consider those two generators equivalent. For example, if the words ab and cd form diagram (a), our

group is ⟨xab, xcd, . . . ∣ xab = xcd . . .⟩. Note S is finite as there are only finitely many options for such

two letter words in the square model at d < 1/3. After adding the diagram (a) relations, our group

is still finitely generated. The map from this group to our visible vertex stabilizer identifies each

word in S with the corresponding two-letter word in G: so xab maps to the product ab. Certainly

the map is surjective as we chose S from the full set of generators of the visible vertex stabilizers;

we need now show the map is injective. We show if a relator r holds in the vertex stabilizer, it arises

as a product of diagram (a) relators.

Suppose there is a relator r between vertex stabilizing elements with no ww−1 factors, where w is

a two-letter word in our basis. Then r forms the boundary of a Van Kampen diagram ∆. Now

freely reduce the diagram, so that the boundary is a reduced word r′. Note that reductions only

occur between two different two-letter words, and form a new two-letter word which still stabilizes

the vertex: for example, ab−1 ⋅ bc = ac, so ac here still stabilizes the vertex.

Suppose these reductions result in a trivial r′. Then ∣∂∆∣ = 0, so by (∗), we know ∣∆∣ = 0 and so ∆ is

trivial. Assume r contains no trivial subword which is a product of generators. Choose a particular

algorithm for the free reduction to the trivial r′, so each letter a is matched with a particular a−1

which cancels it out– call this instance of the inverse letter its partner. Consider the first 2-letter

generator u that appears in r, and suppose u = ab. If the next letter in r is c ≠ b−1, then the partner

c−1 occurs in r earlier than the partner b−1 does. An even number of letters must pass between c

and its partner c−1, which means the word that begins with c and ends with c−1 is of even length,

freely reducible, and a product of generators, contrary to our assumption. Thus the next letter must

be the partner b−1, and so r is in the form (ab)(b−1a3)(a−1
3 a4) . . . (a−1

n a
−1). That is, every letter is

adjacent to its partner except for the first and last ones.

If any a−1
i ai+1 factor is equal to u besides the first, then the partner of the first letter is ai = a−1.

Since every ak is partnered with a−1
k when k ≠ 1, this means ab . . . a−1

i−1ai is a trivial subword which

is a product of generators, contrary to our assumption. Similarly, if any a−1
i ai+1 is u−1, then we

again have a trivial subword in b−1a3 . . . a
−1
i−1ai. So u,u−1 do not appear again in r, so we can write

u as a product of other 2-letter generators, which means we did not choose a minimal set for our

generating set.
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Thus we may assume that r′ is not trivial, and consider the now-reduced ∆. Since hypergraphs

are embedded, there must exist a corner 2-cell C where two hypergraphs h and l exit ∆ along two

adjacent edges on the boundary of ∆.

Now C contains letters from two stabilizing two-letter words, and by Proposition 4.16 each word

forms one of two specified diagrams in Figure 21, with h and l dual to these words. Then h and l

are each contained in one of these diagrams, either as a subdiagram of ∆ or not.

Suppose h does not form a subdiagram of ∆, so two adjacent boundary edges of ∆ are intersected by

h. Since h is embedded, h must exit ∆ at least two more times at other boundary edges. However,

every two-letter word along ∂∆ forms such a diagram, so h must exit at adjacent edges and form

another diagram outside ∆. While h may do this several times, it eventually makes a loop, as in

Figure 30. But hypergraphs are embedded trees. So both h and l must form diagrams from Figure

21 as subdiagrams of ∆.

Figure 30. Forming a Figure 21 diagram outside ∆ forces a loop in the hypergraph

C
C

h
+

h
-

l

k
h

l

Figure 31. Last two cases in Lemma 4.18, with the heavy black lines indicating
boundary edges of ∆. Left side indicates impossibility of including diagram (b) in
a diagram from Figure 4.3 for l, right side indicates impossibility of including part
of diagram (c) in one for k

We show that h and l must intersect twice in the diagram. As h separates ∆, we can call h− the

side that contains the boundary edge of C dual to l, and h+ the other side, so l crosses from h− to

h+ in C. We know h exits ∆ at the next boundary cell of ∆, so there are no other boundary edges
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in h+. As l needs to exit ∆ again, we must have l exiting ∆ in h−, which means l crosses from h+

back to h− in ∆. Then h and l intersect twice, which mean that they too must form a diagram from

Figure 6.

Suppose l and h form diagram (a). This gives a relation between the two words dual to h and l,

and we chose only one of those two words as a basis element, so this is a trivial relation.

Suppose l and h form diagram (b), and h is the hypergraph that satisfies this diagram as in Propo-

sition 4.16 (so the 2-letter word dual to h labels the green path in Figure 21). Then the diagram for

l would necessarily contain the entire diagram (b) as a subdiagram, since it follows l and includes

the disk collared by l and the two-letter word on the boundary dual to l. See the left side of Figure

31. None of the diagrams from Figure 21 contain diagram (b) as a subdiagram, so l cannot form

one of the diagrams as a vertex-stabilizing word inside ∆, contradiction.

Suppose l and h form diagram (c). Then, as in Proposition 4.16 base case (1), the third hypergraph

k in diagram c must intersect both l and h twice, as well as form a Figure 21 diagram along the

boundary of ∆. See the right side of Figure 31. But none of the diagrams in Figure 21 contain

diagram (c) as a subdiagram.

Then no such diagram can exist, and so no such r can exist. Thus any relator in the visible

vertex stabilizer must include ww−1 factors, and so arise from a diagram (a) relator as in our group

presentation. �

COROLLARY 4.19. Vertex stabilizers are free.

Proof. By Proposition 4.15, nonprincipal vertex stabilizers are subgroups of principal vertex

stabilizers. As those are free by Proposition 4.18, so are nonprincipal vertex stabilizers. �

Proof of Theorem 4.1. By Corollary 3.15 in [27], these groups are hyperbolic. By Corollary

5.11 in [27], hypergraph stabilizers are quasiconvex. With these two facts we can apply Corollary

C from [13] and say that nonprincipal vertex stabilizers are finitely generated. With Corollary 4.17

and Corollary 4.19, vertex stabilizers are free and finitely generated. �

This result is an application of Groves-Manning’s result, which should prove fruitful in further

research to show other groups are virtually special. For example, we hope that random groups

in other models, namely the density model, may also be shown to be residually finite using this

technique. There are two immediate potential paths to this method. Ollivier and Wise have shown

that random groups at density d < 1/6 are residually finite, and we hope this technique can be
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applied to d < 1/5 as they show such hypergraphs are embedded but the resulting action on the

cube complex is not proper [30]. By using a different method to create the cube complex, Mackay

and Przytycki extend Ollivier and Wise’s result to d < 5/24–it is possible this may be extended to

d < 1/4 by applying this technique [31].



CHAPTER 5

Random Nilpotent Groups

Note: this chapter is excerpted from “Random Nilpotent Groups I” published in International

Mathematics Research Notices as [4], joint with Matthew Cordes, Moon Duchin, Meng-Che (Turbo)

Ho, and Ayla Sánchez. See Appendix for Publisher’s Note. I added a few sentences throughout

connecting it to the rest of this thesis.

1. Introduction and background

The results of this chapter are summarized as follows:

● In the remainder of this section, we establish a sequence of group theory and linear algebra

lemmas for the following parts.

● In §2, the properties of non-backtracking random walk are described in order to deduce

arithmetic statistics of Mal’cev coordinates—this is necessary to use the prior literature on

random lattices and matrices.

● We survey the existing results from which ranks of random abelian groups can be calculated;

a theorem of Magnus guarantees that the rank of a nilpotent group equals the rank of its

abelianization. (§3)

● We give a complete description of one-relator quotients of the Heisenberg group, and com-

pute the orders of finite quotients with any number of relators. (§4)

● Using a Freiheitssatz for nilpotent groups, we study the consequences of rank drop, and

conclude that abelian groups occur with probability zero for ∣R∣ ≤ m − 2, while they have

positive probability for larger numbers of relators. Adding relators in a stochastic process

drops the rank by at most one per new relator, with statistics for successive rank drop

given by number-theoretic properties of the Mal’cev coordinates. (§5)

● We give a self-contained proof that a random nilpotent group is a.a.s. trivial exactly if ∣R∣

is unbounded as a function of `. We show how information about the nilpotent quotient

lifts to information about the LCS of a standard (Gromov) random group and observe that

standard random groups are perfect under the same conditions. (§6)

50
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1.1. Nilpotent groups and Mal’cev coordinates. In the free group Fm of rank m, let

Tj,m = {[ai1 , . . . , aij ] ∶ 1 ≤ i1, . . . , ij ≤m}

be the set of all nested commutators with j arguments ranging over the generators. Then the free

s-step rank-m nilpotent group is

Ns,m = Fm/⟪Ts+1,m⟫ = ⟨a1, . . . , am ∣ [ai1 , . . . ais+1] for all ij ⟩,

where ⟪R⟫ denotes the normal closure of a set R when its ambient group is understood. This is the

same expression we found in Section 2.3.

Just as all finitely-generated groups are quotients of (finite-rank) free groups, all finitely-generated

nilpotent groups are quotients of free nilpotent groups. Note that the standard Heisenberg group

H(Z) = ⟨a, b ∣ [a, b, a], [a, b, b] ⟩ is realized as N2,2. In the Heisenberg group, we will use the notation

c = [a, b], so that the center is ⟨c⟩.

The lower central series (LCS) for a s-step nilpotent group G is a sequence of subgroups inductively

defined by Gk+1 = [Gk,G] which form a subnormal series

{1} = Gs+1 ⊲ . . . ⊲ G3 ⊲ G2 ⊲ G1 = G.

(The indexing is set up so that [Gi,Gj] ⊂ Gi+j .) For finitely generated nilpotent groups, this can

always be refined to a polycyclic series

{1} = CGn+1 ⊲ CGn ⊲ . . . ⊲ CG2 ⊲ CG1 = G

where each CGi/CGi+1 is cyclic, so either Z or Z/niZ. The number of Z quotients in any polycyclic

series for G is called the Hirsch length of G. From a polycyclic series we can form a generating

set which supports a useful normal form for G. Make a choice of ui in each CGi so that uiCGi+1

generates CGi/CGi+1. An inductive argument shows that the set {u1, . . . , un} generates G. We

call such a choice a Mal’cev basis for G, and we filter it as MB1 ⊔ ⋅ ⋅ ⋅ ⊔ MBs, with MBj consisting

of basis elements belonging to Gj ∖Gj+1. Now if ui ∈ MBj , let τi be the smallest value such that

uτii ∈ MBj+1, putting τi = ∞ if no such power exists. Then the Mal’cev normal form in G is as

follows: every element g ∈ G has a unique expression as g = ut11 ⋯utnn , with integer exponents and

0 ≤ ti ≤ τi if τi <∞. Then the tuple of exponents (t1, . . . , tn) gives a coordinate system on the group,

called Mal’cev coordinates. We recall that MBj ∪ ⋅ ⋅ ⋅ ∪ MBs generates Gj for each j and that (by

definition of s) the elements of MBs are central.
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We will construct a standard Mal’cev basis for free nilpotent groups Ns,m as follows: let MB1 =

{a1, . . . , am} be the basic generators, let MB2 = {bij ∶= [ai, aj] ∶ i < j} be the basic commutators, and

take each MBj as a subset of Tj,m consisting of some of the commutators from [MBj−1,MB1]. We

note that ∣MB2 ∣ = (m
2
), and more generally the orders are given by the necklace polynomials

∣MBj ∣ =
1

j
∑
d∣j
µ(d)mj/d,

where µ is the Möbius function (see [15, Theorem 11.2.2]).

For example, the Heisenberg group H(Z) = N2,2 has the lower central series {1} ⊲ Z ⊲ H(Z), so

its Hirsch length is 3. H(Z) admits the Mal’cev basis a, b, c (with a = a1, b = a2, and c equal to

their commutator), which supports a normal form g = aAbBcC . The Mal’cev coordinates of a group

element are the triple (A,B,C) ∈ Z3.

1.2. Group theory and linear algebra lemmas. In the free group Fm = ⟨a1, . . . , am⟩, for

any freely reduced g ∈ Fm, we define Ai(g), called the weight of generator ai in the word g, to be

the exponent sum of ai in g. Note that weights A1, . . . ,Am are well defined in the same way for

the free nilpotent group Ns,m for any s. We will let ab be the abelianization map of a group, so

that ab(Fm) ≅ ab(Ns,m) ≅ Zm. Under this isomorphism, we can identify ab(g) with the vector

A(g) ∶= (A1(g), . . . ,Am(g)) ∈ Zm. If we have an automorphism φ on Ns,m, we write φab for the

induced map on Zm, which by construction satisfies ab ○ φ = φab ○ ab. Note that A(g) is also the

MB1 part of the Mal’cev coordinates for g, and we can similarly define a b-weight vector B(g) to be

the MB2 part, recording the exponents of the bij in the normal form.

To fix terminology: the rank of any finitely-generated group will be the minimum size of any gen-

erating set. Note this is different from the dimension of an abelian group, which we define by

dim(Zd ×G0) = d for any finite group G0. (With this terminology, the Hirsch length of a nilpotent

group G is the sum of the dimensions of its LCS quotients.) In any finitely-generated group, we say

an element is primitive if it belongs to some basis (i.e., a generating set of minimum size). For a

vector w = (w1, . . . ,wm) ∈ Zm, we will write gcd(w) to denote the gcd of the entries. So a vector

w ∈ Zm is primitive iff gcd(w) = 1. In this case we will say that the tuple (w1, . . . ,wm) has the

relatively prime property or is RP. As we will see below, an element g ∈ Ns,m is primitive in that

nilpotent group if and only if its abelianization is primitive in Zm, i.e., if A(g) is RP. In free groups,

there exists a primitive element with the same abelianization as g iff A(g) is RP.

The latter follows from a classic theorem of Nielsen [24].
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THEOREM 5.1 (Nielsen primitivity theorem). For every relatively prime pair of integers (i, j),

there is a unique conjugacy class [g] in the free group F2 = ⟨a, b⟩ for which A(g) = i, B(g) = j, and

g is primitive.

Corollary 5.1 (Primitivity criterion in free groups). There exists a primitive element g ∈ Fm with

Ai(g) = wi for i = 1, . . . ,m if and only if gcd(w1, . . . ,wm) = 1.

Proof. Let w = (w1, . . . ,wm). If gcd(w) ≠ 1, then the image of any g with those weights would

not be primitive in the abelianization Zm, so no such g is primitive in Fm.

For the other direction we use induction on m, with the base case m = 2 established by Nielsen. Sup-

pose there exists a primitive element of Fm−1 with given weights w1, . . . ,wm−1. For δ = gcd(w1, . . . ,wm−1),

we have gcd(δ,wm) = 1. Let w = (w1

δ
,⋯, wm−1

δ
). By the inductive hypothesis, there exists an element

g ∈ Fm−1 such that the weights of g are w, and g can be extended to a basis {g, h2, . . . , hm−1} of

Fm−1. Consider the free group ⟨g, am⟩ ≅ F2. Since gcd(δ,wm) = 1, there exist ĝ, ĥ that generate this

free group such that ĝ has weights Ag(ĝ) = δ and Am(ĝ) = wm by Nielsen. Consequently, Ai(ĝ) = wi.

Then ⟨ĝ, ĥ, h2,⋯, hm−1⟩ = ⟨g, h2, . . . , hm−1, am⟩ = Fm, which shows that ĝ is primitive, as desired. �

The criterion in free nilpotent groups easily follows from a powerful theorem due to Magnus.

THEOREM 5.2. [21, Lemma 5.9][Magnus lifting theorem] If G is nilpotent and S ⊂ G is any set

of elements such that ab(S) generates ab(G), then S generates G.

Note that this implies that if G is nilpotent of rank m, then G/⟪g⟫ has rank at least m− 1, because

we can drop at most one dimension in the abelianization.

Corollary 5.2 (Primitivity criterion in free nilpotent groups). An element g ∈ Ns,m is primitive

if and only if A(g) is primitive in Zm.

Now we establish a sequence of lemmas for working with rank and primitivity. Recall that a, b are

the basic generators of the Heisenberg group H(Z) and that c = [a, b] is the central letter.

LEMMA 5.3 (Heisenberg basis change). For any integers i, j, there is an automorphism φ of H(Z) =

N2,2 such that φ(aibjck) = bdcm, where d = gcd(i, j) and m = ij
2d

(d − 1) + k.

In particular, if i, j are relatively prime, then there is an automorphism φ of H(Z) such that φ(aibj) =

b.



1. INTRODUCTION AND BACKGROUND 54

Proof. Suppose ri + sj = d = gcd(i, j) for integers r, s and consider â = asb−r, b̂ = ai/dbj/d. We

compute

[asb−r, ai/dbj/d] = [as, bj/d] ⋅ [b−r, ai/d] = c(ri+sj)/d = c.

If we set ĉ = c, we have [â, b̂] = ĉ and [ĉ, â] = [ĉ, b̂] = 1, so ⟨â, b̂⟩ presents a quotient of the Heisenberg

group. We need to check that it is the full group. Consider h = (â)−i/d(b̂)s. Writing h in terms of

a, b, c, the a-weight of h is 0 and the b-weight is (ri + sj)/d = 1, so h = bct for some t. But then

b = (â)−i/d(b̂)s(ĉ)−t and similarly a = (â)j/d(b̂)r(ĉ)−t
′

for some t′, so all of a, b, c can be expressed in

terms of â, b̂, ĉ.

Finally,

(b̂)d = (ai/dbj/d)d = aibjc−(
d
2
) ij
d2 ,

which gives the desired expression aibjck = (b̂)d(ĉ)m from above. �

PROPOSITION 5.4 (General basis change). Let δ = gcd(A1(g), . . . ,Am(g)) for any g ∈H = Ns,m.

Then there is an automorphism φ of H such that φ(g) = aδm ⋅h for some h ∈H2.

Proof. Let wi = Ai(g) for i = 1, . . . ,m and let ri = wi/δ, so that gcd(r1, . . . , rm) = 1. By

Corollary 5.1, there exists a primitive element x ∈ Fm with weights ri. Let φ be a change of basis

automorphism of Fm such that φ(x) = am. This induces an automorphism of H, which we will also

call φ.

By construction, xδ and g have weight w. Since ab(xδ) = ab(g) = w, we must have φab(w) =

ab(φ(xδ)) = ab(φ(g)). Therefore φ(xδ) and φ(g) have the same weights.

Then ab(φ(g)) = ab(φ(xδ)) = ab(φ(x)δ) = ab(aδm), so φ(g) and aδm only differ by commutators, i.e.,

φ(g) = aδm ⋅ h for some h ∈H2. �

REMARK 5.5. Given an abelian group G = Zm/⟨R⟩, the classification of finitely-generated abelian

groups provides that there are non-negative integers d1, . . . , dm with dm∣dm−1∣ . . . ∣d1 such that G ≅

⊕mi=1 Z/diZ. If G has dimension q and rank r, then d1 = ⋅ ⋅ ⋅ = dq = 0, and dr+1 = ⋅ ⋅ ⋅ = dm = 1, so that

G ≅ Zq × (Z/dq+1Z × ⋅ ⋅ ⋅ ×Z/drZ) .

Now consider a projection map f ∶ Zm → Zm/K ≅ ⊕mi=1 Z/diZ. We can choose a basis e1, . . . , em of

Zm so that

K = span{d1e1, . . . , dmem} ≅
m

⊕
i=1

diZ.
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Then since every element in K is a linear combination of {d1e1, . . . , dmem} and dm∣dm−1∣ . . . ∣d1, we

have that dm divides all the coordinates of all the elements in K. Also dmem ∈ K with em being

primitive.

LEMMA 5.6 (Criterion for existence of primitive vector). Consider a set of r vectors in Zm, and

let d be the gcd of the rm coordinate entries. Then there exists a vector in the span such that the

gcd of its entries is d, and this is minimal among all vectors in the span.

In particular, a set of r vectors in Zm has a primitive vector in its span if and only if the gcd of the

rm coordinate entries is 1.

Proof. With d as above, let K be the Z-span of the vectors and let

γ ∶= inf
w∈K

gcd(w).

One direction is clear: every vector in the span has every coordinate divisible by d, so γ ≥ d. On the

other hand dmem ∈K and gcd(dmem) = dm because em is primitive. But dm is a common divisor of

all rm coordinates, and d is the greatest such, so dm ≤ d and thus γ ≤ d. �

LEMMA 5.7 (Killing a primitive element). Let H = Ns,m and let K be a normal subgroup of H. If

rank(H/K) <m then K contains a primitive element.

Proof. Since rank(H/K) < m, we also have rank(ab(H/K)) < m. Writing ab(H/K) ≅

⊕mi=1 Z/diZ as above, we have dm = 1. By the previous lemma there is a primitive element in

the kernel of the projection ab(H) → ab(H/K), and any preimage in K is still primitive (see

Cor 5.2). �

LEMMA 5.8 (Linear algebra lemma). Suppose u1, . . . , un ∈ Zm and suppose there exists a primitive

vector v in their span. Then there exist v2, . . . , vn such that span(v, v2, . . . , vn) = span(u1, . . . , un).

Proof. Since v ∈ span(u1, . . . , un), we can write v = α1u1 + ⋅ ⋅ ⋅ +αnun. Let x ∈ Zn be the vector

with coordinates αi. Because gcd(v) = 1, we have gcd(αi) = 1, so x is primitive. Thus, we can

complete x to a basis of Zn, say {x,x2, . . . , xn}. Then take

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−v−

−v2−

⋮

−vn−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−x−

−x2−

⋮

−xn−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−u1−

−u2−

⋮

−un−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Since

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−x−

−x2−

⋮

−xn−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ SLn(Z), it represents a change of basis matrix, so we have span(v, v2,⋯, vn) =

span(u1,⋯, un), as needed. �

LEMMA 5.9 (String arithmetic). Fix a free group F = Fm on m generators and let R,S be arbitrary

subsets, with normal closures ⟪R⟫,⟪S⟫. Let φ ∶ F → F /⟪R⟫ and ψ ∶ F → F /⟪S⟫ be the quotient

homomorphisms. Then there exist canonical isomorphisms

(F /⟪R⟫)/⟪φ(S)⟫ ≅ F/⟪R ∪ S⟫ ≅ (F /⟪S⟫)/⟪ψ(R)⟫

that are compatible with the underlying presentation (i.e., the projections from F commute with these

isomorphisms).

Proof. We will abuse notation by writing strings from F and interpreting them in the various

quotients we are considering. Then if G = ⟨F ∣ T ⟩ ≅ F /⟪T⟫ is a quotient of F and U is a subset

of F , we can write ⟨G ∣ U⟩ to mean F/⟪T ∪ U⟫ and can equally well write ⟨F ∣ T,U⟩. Then the

isomorphisms we need just record the fact that

⟨F ∣ R,S ⟩ = ⟨F /⟪R⟫ ∣ S ⟩ = ⟨F /⟪S⟫ ∣ R ⟩. �

Because of this standard abuse of notation where we will variously interpret a string in {a1, . . . , am}±

as belonging to Fm, Ns,m, or some other quotient group, we will use the symbol =G to denote equality

in the group G when trying to emphasize the appropriate ambient group.

2. Random walk and arithmetic uniformity

In this section we survey properties of the simple nearest-neighbor random walk (SRW) and the non-

backtracking random walk (NBSRW) on the integer lattice Zm, then deduce consequences for the

distribution of Mal’cev coordinates for random relators in free nilpotent groups. For the standard

basis {ei} of Zm, SRW is defined by giving the steps ±ei equal probability 1/2m, and NBSRW is

similarly defined but with the added condition that the step ±ei cannot be immediately followed

by the step ∓ei (that is, a step can’t undo the immediately previous step; equivalently, the position

after k steps cannot equal the position after k + 2 steps). Then for a random string w` of ` letters

from {a1, . . . , am}±, we have w` = α1α2⋯α`, where the αi are i.i.d. random variables which equal
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each basic generator or its inverse with equal probability 1/2m. The abelianization X` = A(w`) is

a Zm-valued random variable corresponding to `-step SRW. A random freely reduced string does

not have an expression as a product of variables identically distributed under the same law, but if

v` is such a string, its weight vector Y` = A(v`) is another Zm-valued random variable, this time

corresponding to NBSRW.

It is well known that the distribution of endpoints for a simple random walk in Zm converges to a

multivariate Gaussian: if X` is again the random variable recording the endpoint after ` steps of

simple random walk on Zm, and δt is the dilation in Rm sending v ↦ tv, we have the central limit

theorem:

δ 1
√

`

X` Ð→ N (0, 1
m
I).

This convergence notation for a vector-valued random variable V` and a multivariate normal N (µ,Σ)

means that V` converges in distribution to AW + µ, where the vector µ is the mean, Σ = AAT is

the covariance matrix, and W is a vector-valued random variable with i.i.d. entries drawn from a

standard (univariate) Gaussian distribution N (0,1). In other words, this central limit theorem tells

us that the individual entries of X` are asymptotically independent, Gaussian random variables with

mean zero and expected magnitude
√
`/m. This is a special case of a much more general result of

Wehn for Lie groups and can be found for instance in [2, Thm 1.3]. Fitzner and van der Hofstad

derived a corresponding central limit theorem for NBSRW in [8]. Letting Y` be the Zm-valued

random variable for `-step NBSRW as before, they find that for m ≥ 2,

δ 1
√

`

Y` Ð→ N (0, 1
m−1

I).

Note that the difference between the two statements records something intuitive: the non-backtracking

walk still has mean zero, but the rule causes the expected size of the coordinates to be slightly higher

than in the simple case; also, it blows up (as it should) in the case m = 1.

The setting of nilpotent groups is also well studied. To state the central limit theorem for free

nilpotent groups, we take δt to be the similarity which scales each coordinate from MBj by tj , so

that for instance in the Heisenberg group, δt(x, y, z) = (tx, ty, t2z).

PROPOSITION 5.10 (Distribution of Mal’cev coordinates). Suppose NB` is an Ns,m-valued ran-

dom variable chosen by non-backtracking simple random walk (NBSRW) on {a1, . . . , am}± for ` steps.

Then the distribution on the Mal’cev coordinates is asymptotically normal:

δ 1
√

`

NB` ∼ N (0,Σ).
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For SRW, this is called a “simple corollary” of Wehn’s theorem, [2, Theorem 3.11], where the only

hypotheses are that the steps of the random walk are i.i.d. under a probability measure on Ns,m

that is centered, with finite second moment (in this case, the measure has finite support, so all

moments are finite). Each Mal’cev coordinate is given by a polynomial formula in the a-weights of

the step elements αi (the polynomial for an MBj coordinate has degree j), where the number of

summands gets large as ` → ∞. Switching to NBSRW, it is still the case that NB` is a product of

group elements whose a-weight vectors are independent and normally distributed, so their images

under the same polynomials will be normally distributed as well, with only the covariance differing

from the SRW case. We sketch a simple and self-contained argument for this in the N2,2 non-

backtracking case—that the third Mal’cev coordinate in H(Z) is normally distributed— which we

note is easily generalizable to the other Ns,m with (only) considerable notational suffering. Without

loss of generality, the sample path of the random walk is

g = ai1bj1ai2bj2 . . . airbjr

for some integers is, jt summing to ` or `−1, with all but possibly i1 and jr nonzero. After a certain

number of steps, suppose the last letter so far was a. Then the next letter is either a, b, or b−1

with equal probability, so there is a 1/3 chance of repeating the same letter and a 2/3 chance of

switching. This means that the is and jt are (asymptotically independent) run-lengths of heads for

a biased coin (Bernoulli trial) which lands heads with probability 1/3. On the other hand, r is half

the number of tails flipped by that coin in ` (or ` − 1) trials. In Mal’cev normal form,

g = a∑ isb∑ jtc∑t<s isjt .

Thus the exponent of c is obtained by adding products of run-lengths together (r
2
) times, and

general central limit theorems ensure that adding many independent and identically distributed

(i.i.d.) random variables together tends to a normal distribution.

Our distribution statement has a particularly nice formulation in this Heisenberg case, where the

third Mal’cev coordinate records the signed area enclosed between the x-axis and the path traced

out by a word in {a, b}±.
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baba = a2b2c−3

(2,2,−3)

Corollary 5.11 (Area interpretation for Heisenberg case). For the simple random walk on the

plane, the signed area enclosed by the path is a normally distributed random variable.

Next, we want to describe the effect of a group automorphism on the distribution of coordinates.

Then we conclude this section by considering the distribution of coordinates in various Z/pZ.

Corollary 5.12 (Distributions induced by automorphisms). If φ is an automorphism of Ns,m

and g is a random freely reduced word of length ` in {a1, . . . , am}±, then the Mal’cev coordinates of

ab(φ(g)) are also normally distributed.

Proof. The automorphism φ induces a change of basis on the copy of Zm in the MB1 coordi-

nates, which is given by left-multiplication by a matrix B ∈ SLm(Z). Then φ∗(Y`)→ N (0,BΣBT ).

�

Note that normality of the MBj coordinates follows as well, as before: they are still described by

sums of statistics coming from asymptotically independent Bernoulli trials, and only the coin bias

has changed.

Relative primality of MB1 coefficients turns out to be the key to studying the rank of quotient

groups, so we will need some arithmetic lemmas.

LEMMA 5.13 (Arithmetic uniformity). Let Ai,` be the Z-valued random variable given by the ai-

weight of a random freely reduced word of length ` in {a1, . . . , am}±, for 1 ≤ i ≤ m. Let Âi,` equal

Ai,` with probability 1
2

and Ai,`−1 with probability 1
2

. Then for fixed m ≥ 2, fixed i, and `→∞,

∀k,n, Pr(Âi,` ≡ k mod n) = 1

n
+ o(1).

Furthermore, the distributions are independent in different coordinates:

Pr(Âi1,` ≡ k1,⋯Âis,` ≡ ks mod n) = 1

ns
+ o(1) for ij distinct, s ≤m.
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In other words, the Z/nZ-valued random variables induced by the coordinate projections from NB-

SRW on MB1 approach independent uniform distributions.

Proof. First, consider SRW on Zm, which induces a lazy random walk (i.e., stays still with

some probability, and moves forward or back with equal probabilities) on each coordinate. For odd

n, the random walk is a Markov process on the finite graph given by the torus (Z/nZ)m, so Ai,`

approaches a uniform distribution (see [6, Chapter 3C]), and the result follows for Âi,`. In fact, in

that case the error term decays exponentially fast in `:

∀k,∀n ≤
√
`, ∣Pr(Ai,` ≡ k (modn)) − 1

n
∣ ≤ e−π

2`/n2

.

For n = 2 (and likewise for other even n) the construction of Â corrects the parity bias, since Âi,` is

now equally likely to have same parity as ` or the opposite parity. To make NBSRW into a Markov

process, we must create a new state space where the states correspond to directed edges on the

discrete torus, which encodes the one step of memory required to avoid backtracking. This new

state space can itself be rendered as a homogeneous finite graph, and the result follows. Since the

ith coordinate of the torus position corresponds to the Âi,` value, uniformity over the torus implies

the independence and uniformity we need. �

Corollary 5.14 (Uniformity mod p). The abelianization of a random freely reduced word in Fm has

entries that are asymptotically uniformly distributed in Z/pZ for each prime p, and the distribution

mod p is independent of the distribution mod q for any distinct primes p, q.

Proof. For independence, consider n = pq in the previous Lemma. �

Corollary 5.15 (Probability of primitivity). For a random freely reduced word in Fm, the proba-

bility that it is primitive in abelianization tends to 1/ζ(m), where ζ is the Riemann zeta function.

In particular, for m = 2, the probability is 6/π2.

Proof. Using arithmetic uniformity, one derives a probability expression that agrees with

1/ζ(m) by Euler’s product formula for the zeta function; see [16]. �

REMARK 5.16 (Comparison of random models). As we have seen, abelianizations of Gromov

random groups are computed as cokernels of random matrices M whose columns are given by non-

backtracking simple random walk on Zm.

Other models in the random abelian groups literature have somewhat different setup. Dunfield and

Thurston [7] use a lazy random walk: ` letters are chosen uniformly from the (2m + 1) possibilities
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of a±i and the identity letter, creating a word of length ≤ `, whose abelianization becomes a column

of M .

Kravchenko–Mazur–Petrenko [20] and Wang–Stanley [36] use the standard “box” model: integer

entries are drawn uniformly at random from [−`, `], and asymptotics are calculated as `→∞. (This

is the most classical way to randomize integers in number theory; see [16].)

However, all of the arguments in all of these settings rely on arithmetic uniformity of coordinates

mod p to calculate probabilities of relative primality, which is why the Riemann zeta function comes

up repeatedly in the calculations. Since we have also established arithmetic uniformity for our setting

in Corollary 5.14, the results achieved in these other models will carry over to our groups directly.

3. Preliminary facts about random nilpotent groups via abelianization

In this section we make a few observations relevant to the model of random nilpotent groups we

study below. In particular, there has been substantial work on quotients of free abelian groups Zm by

random lattices, so it is important to understand the relationship between a random nilpotent group

and its abelianization. Below, and throughout the paper, recall that probabilities are asymptotic as

`→∞.

First, we record the simple observation that depth in the LCS is respected by homomorphisms.

LEMMA 5.17. Let φ ∶ G → H be a surjective group homomorphism. Then φ(Gk) = Hk where Gk,

Hk are the level-k subgroups in the respective lower central series.

Proof. Since φ is a homomorphism, depth-k commutators are mapped to depth-k commuta-

tors, i.e., φ(Gk) ⊆ Hk. Let h ∈ Hk. Without loss of generality we can assume h is a single nested

commutator h = [w1, . . . ,wk]. By surjectivity of φ we can choose lifts w1, . . . ,wk of w1, . . . ,wk. We

see [w1, . . . ,wk] ∈ Gk and φ(Gk) ⊇Hk. �

To begin the consideration of ranks of random nilpotent groups, note that the Magnus lifting theorem

(Theorem 5.2) tells us the rank of Ns,m/⟪R⟫ equals the rank of its abelianization Zm/⟨R⟩, so we

quickly deduce the probability of rank drop.

PROPOSITION 5.18 (Rank drop). For a random r-relator nilpotent group G = Ns,m/⟪g1, . . . , gr⟫,

Pr(rank(G) <m) = 1

ζ(rm)
.
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Proof. This follows directly from considering the existence of a primitive element in ⟨ab(R)⟩.

By Lemma 5.6, this occurs if and only if the rm entries are relatively prime, and by arithmetic

uniformity (Lemma 5.13), this is computed by the Riemann zeta function, as in Corollary 5.15. �

Next we observe that a nilpotent group is trivial if and only if its abelianization (i.e., the corre-

sponding Zm quotient) is trivial, and more generally it is finite if and only if the abelianization is

finite. Equivalence of triviality follows directly from the Magnus lifting theorem (Theorem 5.2). For

the other claim, suppose the abelianization is finite. Then powers of all the images of ai are trivial

in the abelianization, so in the nilpotent group G there are finite powers arii in the commutator

subgroup G2. A simple inductive argument shows that every element of Gj has a finite power in

Gj+1; for example, consider bij ∈ G2. Since [arii , aj] = b
ri
ij is a commutator of elements from G2 and

G1, it must be in G3, as claimed. But then we can see that there are only finitely many distinct

elements in the group by considering the Mal’cev normal form

g = u∗1u∗2 . . . u∗r

and noting that each exponent can take only finitely many values. Since the rank of a nilpotent

group equals that of its abelianization (by Theorem 5.2 again), it is also true that a nilpotent group

is cyclic if and only if its abelianization is cyclic.

We introduce the term balanced for groups presented with the number of relators equal to the

number of generators, so that it applies to models of random groups Fm/⟪R⟫, random nilpotent

groups Ns,m/⟪R⟫, or random abelian groups Zm/⟨R⟩, where ∣R∣ =m, the rank of the seed group. We

will correspondingly use the terms nearly-balanced for ∣R∣ =m−1, and underbalanced or overbalanced

in the ∣R∣ <m − 1 and ∣R∣ >m cases, respectively.

Then it is very easy to see that nearly-balanced (and thus underbalanced) groups are a.a.s. infinite,

while balanced (and thus overbalanced) groups are a.a.s. finite because m random integer vectors are

R-linearly independent with probability one. However, is also easy to see that if ∣R∣ is held constant,

no matter how large, then there is a nonzero probability that the group is nontrivial (because, for

example, all the a-weights could be even).

To set up the statement of the next lemma, let Z(m) ∶= ζ(2) . . . ζ(m) and

P (m) ∶= ∏
primes p

(1 + 1/p − 1/pm

p − 1
) .
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Recall from Remark 5.16 that we can quote the distribution results of [7],[20],[36] because of the

common feature of arithmetic uniformity.

LEMMA 5.19 (Cyclic quotients of abelian groups). The probability that the quotient of Zm by m−1

random vectors is cyclic is 1/Z(m). With m random vectors, the probability is P (m)/Z(m).

These facts, particularly the first, can readily be derived “by hand,” but can also be computed using

Dunfield–Thurston [7] as follows: their generating functions give expressions for the probability that

i random vectors with Z/pZ entries generate a subgroup of rank j, and the product over primes of

the probability that the Z/pZ reduction has rank ≥m−1 produces the probability of a cyclic quotient

over Z.

The latter fact appears directly in Wang–Stanley [36] as Theorem 4.9(i). We note that correspond-

ing facts for higher-rank quotients could also be derived from either of these two papers, but the

expressions have successively less succinct forms.

Corollary 5.20 (Explicit probabilities for cyclic quotients). For balanced and nearly-balanced pre-

sentations, the probability that a random abelian group or a random nilpotent group is cyclic is a

strictly decreasing function of m which converges as m→∞.

In the balanced case, the limiting value is a well-known number-theoretic invariant. Values are

estimated in the table below.

The convergence for both cases is proved in [36, Theorem 4.9] as a corollary of the more general

statement about the Smith normal form of a random not-necessarily-square matrix M , which is an

expression A = SMT for invertible S,T in which A has all zero entries except possibly its diagonal

entries aii = αi. These αi are then the abelian invariants for the quotient of Zm by the column span

of M (that is, they are the di from Remark 5.5 but with opposite indexing, di = αm+1−i). The rank

of the quotient is the number of these that are not equal to 1.

The probabilities of cyclic groups among balanced and nearly-balanced quotients of free abelian

groups and therefore also for random nilpotent groups are approximated below. Values in the table

are truncated (not rounded) at four digits.

Pr(cyclic) m = 2 m = 3 m = 4 m = 10 m = 100 m = 1000 m→∞

∣R∣ =m − 1 .6079 .5057 .4672 .4361 .4357 .4357 .4357

∣R∣ =m .9239 .8842 .8651 .8469 .8469 .8469 .8469
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Computing the probability of a trivial quotient with r relators is equivalent to the probability that

r random vectors generate Zm.

LEMMA 5.21 (Explicit probability of trivial quotients). For r >m,

Pr (Zm/⟨v1, . . . , vr⟩ = 0) = 1

ζ(r −m + 1)⋯ζ(r)
.

This is a rephrasing of [20, Corollary 3.6] and [36, Theorem 4.8].

REMARK 5.22. From the description of Smith normal form, we get a symmetry in r and m,

namely

Pr (rank (Zm/⟨v1, . . . , vr⟩) =m − k) = Pr (rank (Zr/⟨v1, . . . , vm⟩) = r − k) ∀1 ≤ k ≤ min(r,m)

just by the observation that the transpose of the normal form expression has the same invariants. For

example, applying duality to Lemma 5.19 and reindexing, we immediately obtain, as in Lemma 5.21,

Pr (Zm/⟨v1, . . . , vm+1⟩ = 0) = 1

Z(m + 1)
= 1

ζ(2)⋯ζ(m + 1)
.

4. Quotients of the Heisenberg group

We will classify all G ∶= H(Z)/⟪g⟫ for single relators g, up to isomorphism. As above, we write a, b

for the generators of H(Z), and c = [a, b]. With this notation, H(Z) can be written as a semidirect

product Z2 ⋊Z via ⟨b, c⟩ ⋊ ⟨a⟩ with the action of Z on Z2 given by ba = abc−1, ca = ac.

THEOREM 5.3 (Classification of one-relator Heisenberg quotients). Suppose g = aibjck ≠ 1. Let

d = gcd(i, j), let m = ij
2d

(d − 1) + k as in Lemma 5.3, and let D = gcd(d,m). Then

G ∶=H(Z)/⟪g⟫ ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Z ×Z/kZ) ⋊Z, if i = j = 0;

(Z/d
2

D
Z × Z/DZ) ⋊Z, else,

with the convention that Z/0Z = Z and Z/1Z = {1}. In particular, G is abelian if and only if g = c±1

or gcd(i, j) = 1; otherwise, it has step two. Furthermore, unless g is a power of c (the i = j = 0 case),

the quotient group is virtually cyclic.

Note that this theorem is exact, not probabilistic.

REMARK 5.23 (Baumslag-Solitar case). The Baumslag-Solitar groups are a famous class of groups

given by the presentations BS(p, q) = ⟨a, b ∣ abpa−1 = bq⟩ for various p, q. For the Heisenberg quotients
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as described above, we will refer to D = 1 as the Baumslag-Solitar case, because in that case sd−tm = 1

has solutions in s, t, and one easily checks that the group is presented as

G = ⟨a, b ∣ [a, b] = btd, bd
2

= 1⟩ ≅ BS(1,1 + td)/⟪bd
2

⟫,

a 1-relator quotient of a solvable Baumslag-Solitar group BS(1, q).

Examples:

(1) if g = a, then G = Z.

(2) if g = c, then G = Z2.

(3) if g = c2, then G = (Z ×Z/2Z) ⋊Z.

(4) if g = a20b28c16, we have d = 4, m = 226, D = 2, so we get

G = (Z2/⟨( 4
226 ) , ( 0

4 )⟩) ⋊Z ≅ (Z2/⟨( 4
2 ) , ( 0

4 )⟩) ⋊Z ≅ (Z/8Z ×Z/2Z) ⋊Z.

(5) if g = a2b2c2, we have d = 2, m = 3, D = 1. In this case, b4 =G c2 =G 1 and the quotient group

is isomorphic to Z/4Z⋊Z with the action given by aba−1 = b3. This is a two-step-nilpotent

quotient of the Baumslag-Solitar group BS(1,3) by introducing the relation b4 = 1.

We see that the quotient group G collapses down to Z precisely if gcd(i, j) = 1. Namely, c =G 1 in

that case, so we have a quotient of Z2 by a primitive vector.

Corollary 5.24. For one-relator quotients of the Heisenberg group, G = N2,2/⟪g⟫,

Pr(G ≅ Z) = 6

π2
≈ 60.8% ; Pr(G step 2, rank 2) = 1 − 6

π2
.

Of course, if g = c, we have Z2, but this event occurs with probability zero. If gcd(i, j) ≠ 1, then G

is two-step (thus non-abelian) and has torsion.

Proof of theorem. First, the (i, j) = (0,0) case is very straightforward: then g = ck and the

desired expression for G follows.

Below, we assume (i, j) ≠ (0,0), and by Lemma 5.3, without loss of generality, we will write g = bdcm.

Consider the normal closure of b, which is ⟪b⟫ = ⟨b, c⟩. This intersects trivially with ⟨a⟩, and

G = ⟪b⟫⟨a⟩. Thus G = ⟨b, c⟩ ⋊ ⟨a⟩.
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Now in H(Z), we compute ⟪g⟫ = ⟨bdcm, cd⟩ ⊂ ⟨b, c⟩. Thus

⟨b, c⟩ ≅ Z2/⟨( dm ) , ( 0
d )⟩.

We have the semidirect product structure G ≅ Z2/⟨( dm ) , ( 0
d )⟩⋊Z, where the action sends ( 1

0 )↦ ( 1
1 )

and fixes ( 0
1 ). Note that c has order d in G, and a simple calculation verifies that b has order d2/D,

where D = gcd(d,m). If we are willing to lose track of the action and just write the group up to

isomorphism, then we can perform both row and column operations on [ d 0
m d ] to get [ d2/D 0

0 D
], which

produces the desired expression. �

In fact, we can say something about quotients of H(Z) with arbitrary numbers of relators. First

let us define the K-factor K(R) of a relator set R = {g1, . . . , gr}, where relator g1 has the Mal’cev

coordinates (i1, j1, k1), and similarly for g2, . . . , gr. Let M =
⎛
⎜⎜
⎝

i1 i2 . . . ir

j1 j2 . . . jr

⎞
⎟⎟
⎠

and suppose its

nullity (the dimension of its kernel) is q. Then let W be a kernel matrix of M , i.e., an r × q matrix

with rank q such that MW = 0. (Note that if R is a random relator set, then q = r − 2, since the

rank of M is 2 with probability one.) Let k = (k1, . . . , kr) be the vector of c-coordinates of relators,

so that kW ∈ Zq. Then K(R) ∶= gcd(kW ) is defined to be the gcd of those q integers.

THEOREM 5.4 (Orders of Heisenberg quotients). Consider the group G = H(Z)/⟪g1, . . . , gr⟫,

where relator g1 has the Mal’cev coordinates (i1, j1, k1), and similarly for g2, . . . , gr. Let d =

gcd(i1, j1, . . . , ir, jr); let ∆ be the co-area of the lattice spanned by the ( iαjα ) in Z2; and let K =K(R)

be the K-factor defined above. Then c has order γ = gcd(d,K) in G and ∣G∣ = ∆ ⋅ γ.

Proof. Clearly ∆ is the order of ab(G) = G/⟨c⟩. So to compute the order of G, we just need

to show that the order of c in G is γ. Consider for which n we can have cn ∈ ⟪g1, . . . , gr⟫, i.e.,

cn =
N

∏
α=1

wα g
εα
α w−1

α

for arbitrary words wα and integers εα. First note that all commutators [w, gα] are of this form,

and that by letting w = a or b, these commutators can equal ciα or cjα for any α, so n can be an

arbitrary multiple of d.

Next, consider the expression in full generality and note that A(cn) = ( 0
0 ). Conjugation preserves

weights, so A(wαgεαα w−1
α ) = A(gεαα ) = εαA(gα) = εα ( iαjα ). To get the two sides to be equal in
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abelianization, the εα must record a linear dependency in the ( iαjα ). Finally we compute

n =∑
α

εα(xαjα − yαiα) + ∑
α<β

εαεβiβjα −∑
α

iαjα
εα(εα − 1)

2
+∑

α

εαkα,

where ( xαyα ) = A(wα). We can observe that each of the first three terms is a multiple of d and the

fourth term is an arbitrary integer multiple of K. (To see this, note that the column span of W is

exactly the space of linear dependencies in the A(gα), so ∑ εαkα is a scalar product of the k vector

with something in that column span, and is therefore a multiple of K.) Thus n can be any integer

combination of d and K, as we needed to prove. �

5. Rank drop

First, we establish that adding a single relator to a (sufficiently complicated) free nilpotent group

does not drop the nilpotency class; the rank drops by one if the relator is primitive in abelianization

and it stays the same otherwise. Furthermore, a single relator never drops the step unless the starting

rank was two. This is a nilpotent version of Magnus’s famous Freiheitssatz (freeness theorem) for

free groups [21, Theorem 4.10].

THEOREM 5.5 (Nilpotent Freiheitssatz). For any g ∈ Ns,m with s ≥ 2,m ≥ 3, there is an injective

homomorphism

Ns,m−1 ↪ Ns,m/⟪g⟫.

This is an isomorphism if and only if gcd(A1(g), . . . ,Am(g)) = 1.

If m = 2 the result holds with Z↪ Ns,2/⟪g⟫.

Proof. Romanovskii’s 1971 theorem [33, Theorem 1] does most of this. In our language,

the theorem says that if Am(g) ≠ 0, then ⟨a1, . . . , am−1⟩ is a copy of Ns,m−1. This establishes the

needed injection except in the case g ∈ [Ns,m,Ns,m], where A(g) is the zero vector. In the m = 2

case, any such Ns,2/⟪g⟫ has abelianization Z2, so the statement holds. For m > 2, one can apply

an automorphism so that g is spelled with only commutators involving am. Even killing all such

commutators does not drop the nilpotency class because m > 2 ensures that there are some Mal’cev

generators spelled without am in each level. Thus in this case ⟨a1, . . . , am−1⟩ ≅ Ns,m−1 still embeds.

It is easy to see that if g is non-primitive in abelianization, then the rank of ab(Ns,m/⟪g⟫) is m,

and so the quotient nilpotent group has rank m as well. However, the image of Romanovskii’s map

has rank m − 1, so it is not a surjection.
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On the other hand, suppose ab(g) is a primitive vector. Then the rank of the abelianized quotient

is m − 1, and by Magnus’s theorem (Theorem 5.2) the rank of the nilpotent quotient is the same.

The group G = Ns,m/⟪g⟫ is therefore realizable as a quotient of that copy of Ns,m−1. Since the

lower central series of Ns,m−1 has all free abelian quotients, any proper quotient would have smaller

Hirsch length, and this contradicts Romanovskii’s injection. Thus relative primality implies that the

injection is an isomorphism. �

Now we can use rank drop to analyze the probability of an abelian quotient for a free nilpotent group

in the underbalanced, nearly balanced, and balanced cases (i.e., cases with the number of relators

at most the rank).

LEMMA 5.25 (Abelian implies rank drop for up to m relators). Let G = Ns,m/⟪R⟫, where R =

{g1, . . . , gr} is a set of r ≤m random relators. Suppose s ≥ 2 and m ≥ 2. Then

Pr(G abelian ∣ rank(G) =m) = 0.

Proof. Suppose that rank(G) = m and G is abelian. We use the form of the classification of

abelian groups (Remark 5.5) in which G ≅ ⊕mi=1Z/diZ, where dm ∣ . . . ∣ d1 so that d1 = ⋅ ⋅ ⋅ = dq = 0 for

q = dim(G), and we write ⟪ab(R)⟫ = ⟨d1e1, . . . , dmem⟩ for a basis {ei} of Zm. Since rank(G) =m, we

can assume no di = 1. We can lift the basis {ei} of Zm to a generating set {ai} of Ns,m by Magnus

(Theorem 5.2). Note that the exponent of each generator in each relator is a multiple of dm.

Next we show that we cannot kill a commutator in G without dropping rank. Let b1 = [a1, am]. We

claim that b1 ∉ ⟪g1, . . . , gr⟫. To do so, we compute an arbitrary element

n

∏
α

wαg
εα
α w

−1
α ∈ ⟪g1, . . . , gr⟫.

Conjugation preserves weights, so A(wαgεαiαw
−1
α ) = A(gεαiα ) = εαA(giα). If the product is equal to b1,

then its a-weights are all zero. Now consider the b-weights. For the product, the b-weights are the

combination of the b-weights of the gα, modified by amounts created by commutation. However,

since all the a-exponents of all the gα are multiples of dm, we get

∑ εiA(gi) = (
0
0
⋮
0

) , ∑ εiB(gi) ≡ (
1
0
⋮
0

) (mod dm),

where each εi is the sum of the εα corresponding to gi. The second expression ensures that the εi

are not all zero, so the first equality is a linear dependence in the A(gi), which has probability zero

since r ≤m. �



5. RANK DROP 69

THEOREM 5.6. (Underbalanced quotients are not abelian) Let G = Ns,m/⟪R⟫, where R = {g1, . . . , gr}

is a set of r ≤m − 2 random relators gi. Then

Pr(G abelian) = 0.

Proof. Suppose that G is abelian, and consider elements of G as vectors in Zm via the abelian-

ization map on Ns,m; in this way we get vectors v1 = A(g1), . . . , vr = A(gr). From the previous result

we may assume rank(G) < m. By Lemma 5.6, we can find a primitive vector w as a linear combi-

nation of the vi. Then we apply the linear algebra lemma (Lemma 5.8) to extend w appropriately

so that span(v1, . . . , vr) = span(w,w2, . . . ,wr). We can find a series of elementary row operations

(switching, multiplication by −1, or addition) to get (w,w2, . . . ,wr) from (v1, . . . , vr), and we lift

these operations to elementary Nielsen transformations (switching, inverse, or multiplication, re-

spectively) in Ns,m to get (g′, g′2, . . . , g′r) from (g1, . . . , gr). Note that Nielsen transformations on a

set of group elements preserve the subgroup they generate, so also preserve normal closure. This lets

us define R′ = {g′, g′2, . . . , g′r} with ⟪R′⟫ = ⟪R⟫. Since g′ has a weight vector w whose coordinates are

relatively prime, the Freiheitssatz (Theorem 5.5) ensures that Ns,m/⟪g′⟫ ≅ Ns,m−1. Thus we have

G = Ns,m−1/⟪g′2, . . . , g′r⟫.

If r ≤m − 2, then iterating this argument r − 1 times gives G ≅ Ns,m−r+1/⟪gr⟫ for some new gr, and

m− r+ 1 ≥ 3. Then we can apply Theorem 5.5 to conclude that this quotient is not abelian, because

its nilpotency class is s > 1. �

PROPOSITION 5.26 (Cyclic quotients). If ∣R∣ =m − 1 or ∣R∣ =m, then abelian implies cyclic:

Pr(G cyclic ∣ G abelian) = 1.

Proof. Running the proof as above, we iterate the reduction m − 2 times to obtain G ≅ Ns,2/

⟪g⟫ or Ns,2/⟪g, g′⟫.

If g (or any element of ⟪g, g′⟫) is primitive, then G is isomorphic to Z or a quotient of Z, i.e., G is

cyclic.

Otherwise, note that N ∶= Ns,2 has the Heisenberg group as a quotient (H(Z) = N1/N3). If G is

abelian, then the corresponding quotient of H(Z) is abelian. In the non-primitive case, this can

only occur if c ∈ ⟪g, g′⟫, which (as in the proof of Lemma 5.25) implies A(g) = (0,0) (or a linear

dependency between A(g) and A(g′)). But by Corollary 5.12, the changes of basis do not affect the

probability of linear dependency, so this has probability zero. �
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Corollary 5.27. For nearly-balanced and balanced models, the probability that a random nilpotent

group is abelian equals the probability that it is cyclic.

We reprise the table from §3, recalling that values are truncated at four digits.

Pr(abelian) m = 2 m = 3 m = 4 m = 10 m = 100 m = 1000 m→∞

∣R∣ =m − 1 .6079 .5057 .4672 .4361 .4357 .4357 .4357

∣R∣ =m .9239 .8842 .8651 .8469 .8469 .8469 .8469

Corollary 5.28 (Abelian one-relator). For any step s ≥ 2,

Pr(Ns,m/⟪g⟫ is abelian) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

6/π2, m = 2

0, m ≥ 3.

Note that these last two statements agree for m = 2, ∣R∣ =m − 1 = 1.

6. Trivializing and perfecting random groups

In this final section, we first find the threshold for collapse of a random nilpotent group, using the

abelianization. Then we will prove a statement lifting facts about random nilpotent group to facts

about the LCS of classical random groups, deducing that random groups are perfect with exactly

the same threshold again.

Recall that Tj,m = {[ai1 , . . . , aij ] ∶ 1 ≤ i1, . . . , ij ≤m} contains the basic nested commutators with j

arguments. In this section we fix m and write F for the free group, so we can write Fi for the groups

in its lower central series. Similarly we write N for Ns,m (when s is understood), and Tj for Tj,m.

Note that ⟪Tj⟫ = Fj , so N = F /Fs+1.

For a random relator set R ⊂ F , we write Γ = F /⟪R⟫, G = N/⟪R⟫, and H = Zm/⟨R⟩ = ab(Γ) = ab(G),

using the abuse of notation from Lemma 5.9 and treating R as a set of strings from F to be identified

with its image in N or Zm. In all cases, R is chosen uniformly from freely reduced words of length

` or ` − 1 in F .

First we need a result describing the divisibility properties of the determinants of matrices whose

columns record the coordinates of random relators.

LEMMA 5.29 (Arithmetic distribution of determinants). For a fixed rank m ≥ 1 and prime p, let

M be an m ×m random matrix whose entries are independently uniformly distributed in Z/pZ and
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let ∆ = detM . Then

Pr(∆ ≡ 0 mod p) = 1 − [(1 − 1

p
)(1 − 1

p2
) . . .(1 − 1

pm
)] ,

and the remaining probability is uniformly distributed over the nonzero residues.

Proof. The number of nonsingular matrices with Fq entries is

∣GLm(Fq)∣ = (qm − 1) (qm − q) . . . (qm − qm−1)

out of qm
2

total matrices, where q is any prime power [32]. This establishes the probability that

p ∣ ∆. On the other hand, it is a classical fact due to Gauss that every prime modulus has a primitive

root, or a generator for its multiplicative group of nonzero elements. Suppose α is a primitive root

mod p. If x is the random variable that is uniformly distributed in Z/pZ, then αx is as well. For any

m ×m matrix A, let f(A) be the matrix whose entries are identical to A but (f(A))1j = αa1j for

the first-row entries. Then det(fk(A)) ≡ αk∆. If ∆ ≢ 0, then this takes all nonzero values modulo

p for k = 0,1, . . . ,m − 1. But since all of the matrix entries are distributed by the same law for each

random matrix fk(M), it follows that ∆ gives equal probability to each nonzero value mod p. �

The following theorem tells us that in sharp contrast to Gromov random groups, where the number

of relators required to trivialize the group is exponential in `, even the slowest-growing unbounded

functions, like log log log ` or an inverse Ackermann function, suffice to collapse random abelian

groups and random nilpotent groups.

THEOREM 5.7 (Collapsing abelian quotients). For random abelian groups H = Zm/⟨R⟩ with ∣R∣

random relators, if ∣R∣ →∞ as a function of `, then H = {0} with probability one (a.a.s.). If ∣R∣ is

bounded as a function of `, then there is a positive probability of a nontrivial quotient, both for each

` and asymptotically.

Proof. For a relator g, its image in Zm is the random vector A(g), which converges in dis-

tribution to a multivariate normal, as described in §2. Furthermore, the image of this vector in

projection to Z/pZ has entries independently and uniformly distributed. We will consider adding

vectors to this collection R until they span Zm, which suffices to get H = {0}.

Choose m vectors v1, . . . vm in Zm at random. These vectors are a.a.s. R-linearly independent,

because their distribution is normal and linear dependence is a codimension-one condition. Therefore

they span a sublattice L1 ⊂ Zm. The covolume of L1 (i.e., the volume of the fundamental domain)
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is ∆1 = det(v1, . . . , vm). As we add more vectors, we refine the lattice. Note that ∆1 = 1 if and only

if L1 = Zm. Similarly define Lk to be spanned by v(k−1)m+1, . . . , vkm for k = 2,3, . . . , and define ∆k

to be the corresponding covolumes.

Note that for two lattices L,L′, the covolume of the lattice L ∪ L′ is always a common divisor of

the respective covolumes ∆,∆′. Therefore, the lattice L1 ∪ ⋅ ⋅ ⋅ ∪Lk has covolume ≤ gcd(∆1, . . . ,∆k).

Here, the ∆k are identically and independently distributed with the probabilities described in the

previous result (Lemma 5.29), and divisibility by different primes is independent, and therefore the

probability of having gcd(∆1, . . . ,∆k) = 1 is

∏
primes p

1 − [1 − (1 − 1

p
)(1 − 1

p2
) . . .(1 − 1

pm
)]
k

,

which goes to 1 as k → ∞. (To see this, note that first applying a logarithm, then exchanging the

sum and the limit, gives an absolutely convergent sequence.)

On the other hand, it is immediate that for any finite ∣R∣ there is a small but nonzero chance that

all entries are even, say, which would produce a nontrivial quotient group. �

Of course this also follows immediately from the statement in Lemma 5.21, because

Pr(span{v1, . . . , vr} = Zm) = 1

ζ(r −m + 1)⋯ζ(r)
Ð→ 1

for any fixed m as r →∞, but the above argument is appealingly self-contained.

We immediately get corresponding statements for random nilpotent groups and standard random

groups. Recall that a group Γ is called perfect if Γ = [Γ,Γ]; equivalently, if ab(Γ) = Γ/[Γ,Γ] = {0}.

Corollary 5.30 (Threshold for collapsing random nilpotent groups). A random nilpotent group

G = Ns,m/⟪R⟫ is a.a.s. trivial precisely in those models for which ∣R∣→∞ as a function of `.

Corollary 5.31 (Random groups are perfect). Random groups Γ = Fm/⟪R⟫ are a.a.s. perfect

precisely in those models for which ∣R∣→∞ as a function of `.

Proof. Zm/⟨R⟩ = {0} ⇐⇒ ab(Γ) = {0} ⇐⇒ ab(G) = {0} ⇐⇒ G = {1}, with the last

equivalence from Theorem 5.2. �

We have established that the collapse to triviality of a random nilpotent group G corresponds to

the immediate stabilization of the lower central series of the corresponding standard random group:
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Γ1 = Γ2 = . . . In fact, we can be somewhat more detailed about the relationship between G and the

LCS of Γ.

THEOREM 5.8 (Lifting to random groups). For Γ = Fm/⟪R⟫ and G = Ns,m/⟪R⟫, they are related

by the isomorphism Γ/Γs+1 ≅ G. Furthermore, the first s of the successive LCS quotients of Γ are

the same as those in the LCS of G, i.e.,

Γi/Γi+1 ≅ Gi/Gi+1 for 1 ≤ i ≤ s.

Proof. Since homomorphisms respect LCS depth (Lemma 5.17), the quotient map φ ∶ F → Γ

gives φ(Fj) = Γj for all j. We have

Γ/Γs+1 ≅ F /⟪R,Fs+1⟫ ≅ N/⟪R⟫ = G

by Lemma 5.9 (string arithmetic).

From the quotient map ψ ∶ Γ→ G, we get Γi/Γs+1 = ψ(Γi) = Gi. Thus

Gi/Gi+1
≅ Γi/Γs+1/Γi+1/Γs+1

≅ Γi/Γi+1
. �

Corollary 5.32 (Step drop implies LCS stabilization). For G = Ns,m/⟪R⟫, if step(G) = k < s =

step(Ns,m), then the LCS of the random group Γ stabilizes: Γk+1 = Γk+2 = . . . .

Proof. This follows directly from the previous result, since step(G) = k implies that Gk+1 =

Gk+2 = 1, which means Gk+1/Gk+2 = 1. Since k + 1 ≤ s, we conclude that Γk+1/Γk+2 = 1. Thus

Γk+2 = Γk+1, and it follows by the definition of LCS that these also equal Γi for all i ≥ k + 1. �

Thus, in particular, when a random nilpotent group (with m ≥ 2) is abelian but not trivial, the

corresponding standard random group has its lower central series stabilize after one proper step:

. . .Γ4 = Γ3 = Γ2 ⊲ Γ1 = Γ

For instance, with balanced quotients of F2 this happens about 92% of the time.

In future work, we hope to further study the distribution of steps for random nilpotent groups.



CHAPTER 6

Conclusion

The first few chapters of this thesis focused on the history, background, and necessary definitions

to understand Chapters 4 and 5. We learned about random groups and various models of random

groups along with a few preliminary results in the field, then switched to cube complexes and various

results in that field. In Chapter 4 we married the two fields and used cubulation techniques to prove

that random groups in the square model at a certain density are residually finite. In Chapter 5

we focused on a new model of random groups using a different seed group–rather than quotients of

free groups, we used quotients of free nilpotent groups–and explored a few results there. Together

this document offers a light introduction to cube complex theory and explores two newer models of

random groups: the square model and random nilpotent groups.
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