Rafail Abramov
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago
851 S. Morgan St.
Chicago, IL 60607
E-mail: abramov@uic.edu
Phone: (312) 413 7945
Teaching
MATH 210 — Calculus III
Publications and preprints
-
R. Abramov, Turbulence via intermolecular potential: Uncovering the origin,
preprint, 2023.
[arXiv.org]
-
R. Abramov, Turbulence via intermolecular potential: Viscosity and transition range of the Reynolds number,
Fluids, 2023, vol. 8, no. 3, 101.
[DOI]
[arXiv.org]
-
R. Abramov, Turbulence via intermolecular potential: A weakly compressible model of gas flow at low Mach number,
Physics of Fluids, 2022, vol. 34, no. 12, 125104.
[DOI]
[arXiv.org]
-
R. Abramov, Creation of turbulence in polyatomic gas flow via an intermolecular potential,
Physical Review Fluids, 2022, vol. 7, 054605.
[DOI]
[arXiv.org]
-
R. Abramov, Turbulence in large-scale two-dimensional balanced hard sphere gas flow,
Atmosphere, 2021, vol. 12, no. 11, 1520.
[DOI]
[arXiv.org]
-
R. Abramov, Macroscopic turbulent flow via hard sphere potential,
AIP Advances, 2021, vol. 11, no. 8, 085210.
[DOI]
[arXiv.org]
Also see erratum.
-
R. Abramov, Formation of turbulence via an interaction potential,
preprint, 2021.
[arXiv.org]
-
R. Abramov, Turbulent energy spectrum via an interaction potential,
Journal of Nonlinear Science, 2020, vol. 30, 3057—3087.
[DOI]
[Free view-only version]
[arXiv.org]
-
R. Abramov, A theory of average response to large jump perturbations, Chaos, 2019, vol. 29, 083128.
[DOI]
[arXiv.org]
-
R. Abramov, The random gas of hard spheres, J, 2019, vol. 2, no. 2, 162—205.
[DOI]
[arXiv.org]
-
R. Abramov, The effect of the Enskog collision terms on the steady shock
transitions in a hard sphere gas, preprint, 2018.
[arXiv.org]
-
R. Abramov and J. Otto, Nonequilibrium diffusive gas dynamics: Poiseuille
microflow, Physica D, 2018, vol. 371, 13—27.
[DOI]
[arXiv.org]
-
R. Abramov, Gas near a wall: shortened mean free path, reduced viscosity,
and the manifestation of the Knudsen layer in the Navier-Stokes solution
of a shear flow, Journal of Nonlinear Science, 2018, vol. 28, no. 3, 833—845.
[DOI]
[arXiv.org]
-
R. Abramov, A mass diffusion effect in gas dynamics equations, preprint, 2017.
[arXiv.org]
-
R. Abramov, Diffusive Boltzmann equation, its fluid dynamics,
Couette flow and Knudsen layers, Physica A, 2017, vol. 484, 532—557.
[DOI]
[arXiv.org]
-
R. Abramov, Leading order response of statistical averages of a dynamical system to
small stochastic perturbations, Journal of Statistical Physics, 2017, vol. 166, no. 6, 1483—1508.
[DOI]
[arXiv.org]
-
R. Abramov, Linear response of the Lyapunov exponent to a small constant perturbation,
Communications in Mathematical Sciences, 2016, vol. 14, no. 4, 1155—1167.
[DOI]
[arXiv.org]
-
R. Abramov, A simple stochastic parameterization for reduced models of multiscale
dynamics, Fluids, 2016, vol. 1, no. 1.
[DOI]
[arXiv.org]
-
R. Abramov and M. Kjerland, The response of reduced models of multiscale dynamics
to small external perturbations, Communications in Mathematical Sciences,
2016, vol. 14, no. 3, 831—855.
[DOI]
[arXiv.org]
-
R. Abramov, Coarse-grained transport of a turbulent flow via moments of the
Reynolds-averaged Boltzmann equation,
submitted to Journal of Fluid Mechanics, 2015 — oops, rejected. Left as a preprint.
[arXiv.org]
-
R. Abramov, A simple closure approximation
for slow dynamics of a multiscale system: Nonlinear and multiplicative coupling,
Multiscale Modeling and Simulation, 2013, vol. 11, no. 1, 134—151.
[PDF]
[PDF preprint]
[DOI]
[arXiv.org]
-
R. Abramov, A simple linear response closure approximation
for slow dynamics of a multiscale system with linear
coupling, Multiscale Modeling and Simulation, 2012, vol. 10, no. 1, 28—47.
[PDF]
[PDF preprint]
[DOI]
[arXiv.org]
-
R. Abramov, Suppression of chaos at slow variables by
rapidly mixing fast dynamics through linear energy-preserving
coupling, Communications in Mathematical Sciences, 2012,
vol. 10, no. 2, 595—624.
[PDF]
[PDF preprint]
[DOI]
[arXiv.org]
-
R. Abramov & A. Majda, Low Frequency Climate Response
of Quasigeostrophic Wind-Driven Ocean Circulation,
Journal of Physical Oceanography, 2012, vol. 42, no. 2, 243—260.
[PDF]
[PDF preprint]
-
R. Abramov, Improved linear response for stochastically
driven systems, Frontiers of Mathematics in
China, 2012, vol. 7, no. 2, 199—216.
[PDF]
[DOI]
[arXiv.org]
-
R. Abramov, Approximate linear response for slow variables
of dynamics with explicit time scale separation, Journal
of Computational Physics, 2010, vol. 229, no. 20,
7739—7746.
[DOI
link]
-
A. Majda, R. Abramov & B. Gershgorin, High skill in
low frequency climate response through fluctuation dissipation
theorems despite structural instability, Proceedings of
the National Academy of Sciences, 2010, vol. 107, no. 2, 581—586.
[PDF]
-
R. Abramov, The multidimensional maximum entropy moment
problem: A review on numerical methods, Communications in
Mathematical Sciences, 2010, vol. 8, no. 2,
377—392.
[PDF]
-
R. Abramov, Short-time linear response with reduced-rank
tangent map, Chinese Annals of Mathematics series B, 2009,
vol. 30B, no. 5, 447—462.
[PDF]
-
R. Abramov, The multidimensional moment-constrained
maximum entropy problem: A BFGS algorithm with constraint
scaling, Journal of Computational Physics, 2009,
vol. 228, 96—108.
[DOI
link]
-
R. Abramov & A. Majda, A new algorithm for low
frequency climate response, Journal of the
Atmospheric Sciences, 2009, vol. 66, 286—309.
[DOI link]
-
R. Abramov & A. Majda, New approximations and tests of
linear fluctuation-response for chaotic nonlinear
forced-dissipative dynamical systems, Journal of
Nonlinear Science, 2008, vol. 18, 303—341.
[PDF]
-
R. Abramov & A. Majda, Blended response algorithms for
linear fluctuation-dissipation for complex nonlinear dynamical
systems, Nonlinearity, 2007, vol. 20, 2793—2821.
[PDF]
-
R. Abramov, An improved algorithm for the multidimensional
moment-constrained maximum entropy problem, Journal of
Computational Physics, 2007, vol. 226, 621—644.
[DOI
link]
-
R. Abramov, A practical computational framework for the
multidimensional moment-constrained maximum entropy
principle, Journal of Computational Physics, 2006,
vol. 211, 198—209.
[DOI
link]
-
A. Majda, R. Abramov & M. Grote, Information theory
and stochastics for multiscale nonlinear systems, vol. 25
of CRM Monograph Series, Centre de Recherches
Mathématiques, Université de
Montréal. Published by American Mathematical Society,
2005. ISBN 0-8218-3843-1. 141 pp.
[Amazon]
[Barnes
& Noble]
-
K. Haven, A. Majda & R. Abramov, Quantifying
predictability through information theory: Small sample
estimation in a non-Gaussian framework, Journal of
Computational Physics, 2005, vol. 206, 334—362.
[DOI
link]
-
R. Abramov, A. Majda & R. Kleeman, Information Theory
and Predictability for Low Frequency Variability, Journal
of Atmospheric Sciences, 2005, vol. 62, no. 1,
65—87.
[PDF]
-
R. Abramov & A. Majda, Quantifying uncertainty for
non-Gaussian ensembles in complex systems, SIAM Journal
on Scientific Computing, 2003, vol. 26, no. 2,
411—447.
[PDF]
-
R. Abramov & A. Majda, Discrete approximations with
additional conserved quantities: Deterministic and statistical
behavior, Methods and Applications of Analysis, 2003,
vol. 10, no. 2, 151—190.
[PDF]
-
R. Abramov & A. Majda, Statistically relevant
conserved quantities for truncated quasi-geostrophic
flow, Proceedings of the National Academy of Sciences,
2003, vol. 100, no. 7, 3841—3846.
[PDF]
-
R. Abramov, G. Kovačič & A. Majda, Hamiltonian
structure and statistically relevant conserved quantities for
the truncated Burgers-Hopf equation, Communications in
Pure and Applied Mathematics, 2003, vol. 56,
1—46.
[PDF]
Ph.D. Rensselaer Polytechnic
Institute, Department of
Mathematics, 2002.
Thesis title: Statistically
relevant and irrelevant conserved quantities for the
equilibrium statistical description of the truncated
Burgers-Hopf equation and the equations for barotropic
flow.
[PDF]
Software
The multidimensional moment-constrained maximum entropy algorithm
The library for the PC and some other platforms is there with few examples in C, C++ and
FORTRAN (see file maxent_dist.tar.gz). A short manual is included.
A new, better version of the maxent algorithm
I am working on a better version of what I wrote years ago. The new code is aimed at use in various
applications with different moment problems. Currently, the code is in its initial stage, and the
manual is not yet available.
Last modified: Tue Jan 18 20:19:12 CST 2022